View More View Less
  • 1 Semmelweis Egyetem, Budapest, Üllői út 78/B, 1082
  • 2 Duisburg-Esseni Egyetem, Essen
  • 3 Országos Onkológiai Intézet, Budapest
Open access

Absztrakt:

A metasztatikus kasztrációrezisztens prosztatarák kezelésére az elmúlt években számos új, különböző hatásmechanizmusú gyógyszeres kezelés vált elérhetővé. Ez a fejlődés a terápiás döntéshozatalt egyre nehezebbé teszi. Az újabb kezelésekkel szemben is megfigyelhető az alapvonali, a szerzett és a keresztrezisztencia jelensége is. Ezért tehát az elsődleges terápia helyes megválasztása mellett, az azt követő vonalakban alkalmazott kezelések sorrendje és alkalmazásuk ideje is optimalizálásra szorul. Az újabb kezelésekkel kapcsolatos rezisztenciamechanizmusok egyre nagyobb mértékben válnak ismertté. Ezzel a terápiatervezés az eddigi empirikus – főleg a kipróbálásra építő – irányából egyre inkább a racionális – az adott daganat molekuláris sajátságait is figyelembe vevő –, személyre szabott kezelés irányába mozdul el. Ebben az összefoglaló közleményben ismertetjük azokat a rezisztenciamechanizmusokat, amelyek a metasztatikus kasztrációrezisztens prosztatarák kezelésében leggyakrabban használt három gyógyszerrel – docetaxel, abirateron és enzalutamid – kapcsolatosak. Többek között áttekintést nyújtunk a MDR- (multidrogrezisztens) fehérjéken keresztül megvalósuló, az androgénreceptor-, a Wnt-, a p53-szignálút, valamint a DNS hibajavító mechanizmusában részt vevő gének (mint például a BRCA és ATM) sérüléseivel összefüggésben kialakuló és a neuroendokrin differenciáció által kiváltott rezisztenciamechanizmusokról. Orv Hetil. 2020; 161(20): 813–820.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1

    Mottet N, Bergh RC, Briers E, et al. EAU-ESTRO-ESUR-SIOG Guidelines on prostate cancer. EAU guidelines. European Association of Urology, 2018.

  • 2

    Cornford P, Bellmunt J, Bolla M, et al. EAU-ESTRO-SIOG Guidelines on prostate cancer. Part II: treatment of relapsing, metastatic, and castration-resistant prostate cancer. Eur Urol. 2017; 71: 630–642.

  • 3

    Jordan M, Wilson L. Microtubules as a target for anticancer drugs. Nat Rev Cancer 2004; 4: 253–265.

  • 4

    Szakács G, Paterson JK, Ludwig JA, et al. Targeting multidrug resistance in cancer. Nat Rev Drug Discov. 2006; 5: 219–234.

  • 5

    Duran GE, Wang YC, Francisco EB, et al. Mechanisms of resistance to cabazitaxel. Mol Cancer Ther. 2015; 14: 193–201.

  • 6

    Kato T, Mizutani K, Kameyama K, et al. Serum exosomal P-glycoprotein is a potential marker to diagnose docetaxel resistance and select a taxoid for patients with prostate cancer. Urol Oncol. 2015; 33: 385.e15–385.e20.

  • 7

    Tomlins S, Rhodes DR, Perner S, et al. Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science 2005; 310: 644–648.

  • 8

    Galletti G, Matov A, Beltran H, et al. ERG induces taxane resistance in castration-resistant prostate cancer. Nat Commun. 2014; 5: 5548.

  • 9

    Reig Ò, Marín-Aguilera M, Carrera G, et al. TMPRSS2-ERG in blood and docetaxel resistance in metastatic castration-resistant prostate cancer. Eur Urol. 2016; 70: 709–713.

  • 10

    Küronya Z, Sükösd F, Varga L. ERG expression can predict the outcome of docetaxel combined with androgen deprivation therapy in metastatic hormone-sensitive prostate cancer. Urol Oncol. 2019; 37: 289.e1–289.e9.

  • 11

    Rajpar S, Carmel AC, Merabet Z, et al. The benefit of combining docetaxel to androgen deprivation therapy in localized and metastatic castration-sensitive prostate cancer as predicted by ERG status: an analysis of two GETUG phase III trials. J Clin Oncol. 2017; 35(15 Suppl): 5012.

  • 12

    Mahon KL, Lin HM, Castillo L, et al. Cytokine profiling of docetaxel-resistant castration-resistant prostate cancer. Br J Cancer 2015; 112: 1340–1348.

  • 13

    Balkwill F. Cancer and the chemokine network. Nat Rev Cancer 2004; 4: 540–550.

  • 14

    Darr C, Krafft U, Hadaschik B, et al. The role of YKL-40 in predicting resistance to docetaxel chemotherapy in prostate cancer. Urol Int. 2018; 101: 65–73.

  • 15

    Szarvas T, Sevcenco S, Módos O, et al. Matrix metalloproteinase 7, soluble Fas and Fas ligand serum levels for predicting docetaxel resistance and survival in castration-resistant prostate cancer. BJU Int. 2018; 122: 695–704.

  • 16

    Szarvas T, Sevcenco S, Módos O, et al. Circulating syndecan-1 is associated with chemotherapy-resistance in castration-resistant prostate cancer. Urol Oncol. 2018; 36: 312.e9–312.e15.

  • 17

    Keresztes D, Módos O, Szűcs M, et al. Comparative proteome analysis identified NAMPT as a potential serum marker for the prediction of docetaxel-resistance in prostate cancer. Eur Urol Suppl. 2019; 18: e482.

  • 18

    de Bono JS, Logothetis CJ, Molina A, et al. Abiraterone and increased survival in metastatic prostate cancer. N Engl J Med. 2011; 364: 1995–2005.

  • 19

    Scher HI, Fizazi K, Saad F, et al. Increased survival with enzalutamide in prostate cancer after chemotherapy. N Engl J Med. 2012; 367: 1187–1197.

  • 20

    Azad AA, Volik SV, Wyatt AW, et al. Androgen receptor gene aberrations in circulating cell-free DNA: biomarkers of therapeutic resistance in castration-resistant prostate cancer. Clin Cancer Res. 2015; 21: 2315–2324.

  • 21

    Conteduca V, Wetterskog D, Sharabiani MT, et al. Androgen receptor gene status in plasma DNA associates with worse outcome on enzalutamide or abiraterone for castration-resistant prostate cancer: a multi-institution correlative biomarker study. Ann Oncol. 2017; 28: 1508–1516.

  • 22

    Wyatt AW, Azad AA, Volik SV, et al. Genomic alterations in cell-free DNA and enzalutamide resistance in castration-resistant prostate cancer. JAMA Oncol. 2016; 2: 1598–1606.

  • 23

    Salvi S, Casadio V, Conteduca V, et al. Circulating cell-free AR and CYP17A1 copy number variations may associate with outcome of metastatic castration-resistant prostate cancer patients treated with abiraterone. Br J Cancer 2015; 112: 1717–1724.

  • 24

    Sharifi N, McPhaul MJ, Auchus RJ. “Getting from here to there” – mechanisms and limitations to the activation of the androgen receptor in castration-resistant prostate cancer. J Investig Med. 2010; 58: 938–944.

  • 25

    Steketee K, Timmerman L, Ziel-van der Made AC, et al. Broadened ligand responsiveness of androgen receptor mutants obtained by random amino acid substitution of H874 and mutation hot spot T877 in prostate cancer. Int J Cancer 2002; 100: 309–317.

  • 26

    Romanel A, Gasi Tandefelt D, Conteduca V, et al. Plasma AR and abiraterone-resistant prostate cancer. Sci Transl Med. 2015; 7: 312re10.

  • 27

    Annala M, Vandekerkhove G, Khalaf D, et al. Circulating tumor DNA genomics correlate with resistance to abiraterone and enzalutamide in prostate cancer. Cancer Discov. 2018; 8: 444–457.

  • 28

    Antonarakis ES, Lu C, Wang H, et al. AR-V7 and resistance to enzalutamide and abiraterone in prostate cancer. N Eng J Med. 2014; 371: 1028–1038.

  • 29

    Tagawa ST, Antonarakis ES, Gjyrezi A, et al. Expression of AR-V7 and ARv567es in circulating tumor cells correlates with outcomes to taxane therapy in men with metastatic prostate cancer treated in TAXYNERGY. Clin Cancer Res. 2019; 25: 1880–1888.

  • 30

    Bernemann C, Schnoeller TJ, Luedeke M, et al. Expression of AR-V7 in circulating tumour cells does not preclude response to next generation androgen deprivation therapy in patients with castration resistant prostate cancer. Eur Urol. 2017; 71: 1–3.

  • 31

    To SQ, Kwan EM, Fettke HC, et al. Expression of androgen receptor splice variant 7 or 9 in whole blood does not predict response to androgen-axis-targeting agents in metastatic castration-resistant prostate cancer. Eur Urol. 2018; 73: 818–821.

  • 32

    Armstrong AJ, Halabi S, Luo J, et al. The PROPHECY trial: multicenter prospective trial of circulating tumor cell (CTC) AR-V7 detection in men with mCRPC receiving abiraterone (A) or enzalutamide (E). J Clin Oncol. 2018; 36(15 Suppl): 5004.

  • 33

    Arora VK, Schenkein E, Murali R, et al. Glucocorticoid receptor confers resistance to antiandrogens by bypassing androgen receptor blockade. Cell 2013; 155: 1309–1322.

  • 34

    Puhr M, Hoefer J, Eigentler A, et al. The glucocorticoid receptor is a key player for prostate cancer cell survival and a target for improved antiandrogen therapy. Clin Cancer Res. 2018; 24: 927–938.

  • 35

    Annala M, Struss WJ, Warner EW, et al. Treatment outcomes and tumor loss of heterozygosity in germline DNA repair-deficient prostate cancer. Eur Urol. 2017; 72: 34–42.

  • 36

    Mateo J, Porta N, Bianchini D, et al. Olaparib in patients with metastatic castration-resistant prostate cancer with DNA repair gene aberrations (TOPARP-B): a multicentre, open-label, randomised, phase 2 trial. Lancet Oncol. 2020; 21: 162–174.

  • 37

    Cheng HH, Pritchard CC, Boyd T, et al. Biallelic inactivation of BRCA2 in platinum-sensitive metastatic castration-resistant prostate cancer. Eur Urol. 2016; 69: 992–995.

  • 38

    Szarvas T, Csizmarik A, Szűcs M, et al. Molecular subtypes and perspectives of targeted therapies in prostate cancer. [A prosztatarák molekuláris altípusai és célzott terápiás kilátásai.] Orv Hetil. 2019; 160: 252–263. [Hungarian]

  • 39

    Pal SK, Patel J, He M, et al. Identification of mechanisms of resistance to treatment with abiraterone acetate or enzalutamide in patients with castration-resistant prostate cancer (CRPC). Cancer 2018; 124: 1216–1224.

  • 40

    Wang L, Dehm SM, Hillman DW, et al. A prospective genome-wide study of prostate cancer metastases reveals association of Wnt pathway activation and increased cell cycle proliferation with primary resistance to abiraterone acetate-prednisone. Ann Oncol. 2018; 29: 352–360.

  • 41

    Isaacsson Velho P, Fu W, Wanga H, et al. Wnt-pathway activating mutations are associated with resistance to first-line abiraterone and enzalutamide in castration-resistant prostate cancer. Eur Urol. 2020; 77: 14–21.

  • 42

    Bishop JL, Sio A, Angeles A, et al. PD-L1 is highly expressed in enzalutamide resistant prostate cancer. Oncotarget 2015; 6: 234–242.

  • 43

    Graff JN, Alumkal JJ, Thompson RF, et al. Pembrolizumab (Pembro) plus enzalutamide (Enz) in metastatic castration resistant prostate cancer (mCRPC): extended follow up. J Clin Oncol. 2018; 36(15 Suppl): 5047.

  • 44

    Küronya Z, Biró K, Maráz A, et al. The modern treatment of metastatic castration-resistant prostate cancer. [Metasztatikus kasztrációrezisztens prosztatadaganat korszerű kezelése.] Magy Onkol. 2019; 63: 41–50. [Hungarian]

  • 45

    Beltran H, Tagawa ST, Park K, et al. Challenges in recognizing treatment-related neuroendocrine prostate cancer. J Clin Oncol. 2012; 30: e386–e389.

  • 46

    Heck MM, Thaler MA, Schmid SC, et al. Chromogramin A and neurone-specific enolase serum levels as predictors of treatment outcome in patients with metastatic castration-resistant prostate cancer undergoing abiraterone therapy. BJU Int. 2017; 119: 30–37.

  • 47

    Aggarwal R, Huang J, Alumkal JJ, et al. Clinical and genomic characterization of treatment-emergent small-cell neuroendocrine prostate cancer: a multi-institutional prospective study. J Clin Oncol. 2018; 36: 2492–2503.

  • 48

    Corn PG, Heath EI, Zurita A, et al. Cabazitaxel plus carboplatin for the treatment of men with metastatic castration-resistant prostate cancers: a randomised, open-label, phase 1–2 trial. Lancet Oncol. 2019; 20: 1432–1443. [Correction: Lancet Oncol. 2020; 21: e14.]

 

The author instructions are available in PDF.
Instructions for Authors in Hungarian HERE.

 

Mendeley citation style is available HERE.
  • Impact Factor (2019): 0.497
  • Scimago Journal Rank (2018): 0.176
  • SJR Hirsch-Index (2018): 20
  • SJR Quartile Score (2018): Q3 Medicine (miscellaneous)
  • Impact Factor (2018): 0.564
  • Scimago Journal Rank (2018): 0.193
  • SJR Hirsch-Index (2018): 18
  • SJR Quartile Score (2018): Q3 Medicine (miscellaneous)

Language: Hungarian

Founded in 1857
Publication: Weekly, one volume of 52 issues annually

Senior editors

Editor(s)-in-Chief: Papp Zoltán

Read the professional career of Papp Zoltán HERE.

 

Editorial Board

Click for the Editorial Board

Akadémiai Kiadó
Address: Prielle Kornélia u. 21-35. H-1117 Budapest, Hungary
Phone: (+36 1) 464 8235 ---- Fax: (+36 1) 464 8221
Email: orvosihetilap@akkrt.hu