View More View Less
  • 1 Semmelweis Egyetem, Budapest, Szentkirályi u. 46., 1088
Open access

Absztrakt:

Szervezetünk számos fémiont tartalmaz, amelyeket anyagcsere-folyamataihoz és működéséhez használ fel. A fémion-koncentrációk megváltozása kóros folyamatokat indíthat el, ugyanakkor a különböző kórfolyamatok a fémion-koncentrációk megváltozásához is vezethetnek. A szerzők összefoglaló közleményükben bemutatják, hogy különböző kórokú májbetegségekben hogyan változik a fiziológiásan is jelen lévő fémionok koncentrációja, ismertetik a lehetséges következményeket, illetve tárgyalják az összefüggést a kórfolyamat progressziójával. A szerzők kitérnek a fémionkoncentráció-változások diagnosztikus vagy prognosztikus értékére is. Orv Hetil. 2020; 161(22): 917–923.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1

    Fonyó A, Geiszt M. A textbook of medical physiology. 8th revised edition. [Az orvosi élettan tankönyve. 8. átdolgozott kiadás.] Medicina Könyvkiadó, Budapest, 2019. [Hungarian]

  • 2

    Egresi A, Lengyel G, Somonyi A, et al. Various pathways leading to the progression of chronic liver diseases. [Az idült májbetegségek progressziójához vezető folyamatok.] Orv Hetil. 2016; 157: 290–297. [Hungarian]

  • 3

    Milic S, Mikolasevic I, Orlic L, et al. The role of iron and iron overload in chronic liver disease. Med Sci Monit. 2016; 22: 2144–2151.

  • 4

    Zou DM, Sun WL. Relationship between hepatitis C virus infection and iron overload. Chin Med J (Engl). 2017; 130: 866–871.

  • 5

    Abbaspour N, Hurrell R, Kelishadi R. Review on iron and its importance for human health. J Res Med Sci. 2014; 19: 164–174.

  • 6

    Ádám V. (ed.) Medical biochemistry. 4th revised edition. [Orvosi biokémia. 4. átdolgozott kiadás.] Semmelweis Kiadó, Budapest, 2016. [Hungarian]

  • 7

    Gupta S, Read SA, Shackel NA. The role of micronutrients in the infection and subsequent response to hepatitis C virus. Cells 2019; 8: 603.

  • 8

    Roohani N, Hurrell R, Kelishadi R, et al. Zinc and its importance for human health: an integrative review. J Res Med Sci. 2013; 18: 144–157.

  • 9

    Himoto T, Nomura T, Tani J, et al. Exacerbation of insulin resistance and hepatic steatosis deriving from zinc deficiency in patients with HCV-related chronic liver disease. Biol Trace Elem Res. 2015; 163: 81–88.

  • 10

    Mangray S, Zweit J, Puri P, et al. Zinc deficiency in cirrhosis: micronutrient for thought? Dig Dis Sci. 2015; 60: 2868–2870.

  • 11

    Vetchý M. Biological role of copper as an essential trace element in the human organism. [Biologická role mědi jako základního stopového prvku v lidském organismu.] Ceska Slov Farm. 2018; 67: 143–153. [Czech]

  • 12

    Smallwood RA, Williams HA, Rosenoer VM, et al. Liver-copper levels in liver disease: studies using neutron activation analysis. Lancet 1968; 292(7582): 1310–1313.

  • 13

    Strazzullo P, Leclercq C. Sodium. Adv Nutr. 2014; 5: 188–190.

  • 14

    Padilla O. Blood tests: normal values. MSD Manuals, Professional Version. Merck, Kenilworth, NJ, 2018.

  • 15

    Gianotti RJ, Cardenas A. Hyponatraemia and cirrhosis. Gastroenterol Rep (Oxf). 2014; 2: 21–26.

  • 16

    Machicao VI. Model for end-stage liver disease–sodium score: the evolution in the prioritization of liver transplantation. Clin Liver Dis. 2017; 21: 275–287.

  • 17

    Leggett RW, Williams RL. A model for the kinetics of potassium in healthy humans. Phys Med Biol. 1986; 31: 23–42.

  • 18

    Stone MS, Martyn L, Weaver CM. Potassium intake, bioavailability, hypertension, and glucose control. Nutrients 2016; 8: 444.

  • 19

    Ahya SN, José Soler M, Levitsky J, et al. Acid-base and potassium disorders in liver disease. Semin Nephrol. 2006; 26: 466–470.

  • 20

    Maiwall R, Kumar S, Kumar Sharma M, et al. Prevalence and prognostic significance of hyperkalemia in hospitalized patients with cirrhosis. J Gastroenterol Hepatol. 2016; 31: 988–994.

  • 21

    Sun K, Lu J, Jiang Y, et al. Low serum potassium level is associated with nonalcoholic fatty liver disease and its related metabolic disorders. Clin Endocrinol (Oxf). 2014; 80: 348–355.

  • 22

    Rayman MP. Selenium and human health. Lancet 2012; 379: 1256–1268.

  • 23

    Yang Z, Yan C, Liu G, et al. Plasma selenium levels and nonalcoholic fatty liver disease in Chinese adults: a cross-sectional analysis. Sci Rep. 2016; 6: 37288.

  • 24

    Daniels LA. Selenium metabolism and bioavailability. Biol Trace Elem Res. 1996; 54: 185–199.

  • 25

    Thuluvath PJ, Triger DR. Selenium in chronic liver disease. J Hepatol. 1992; 14: 176–182.

  • 26

    Ross AC. Overview of calcium. In: Ross AC, Taylor CL, Yaktine AL, et al. (eds.) Dietary reference intakes for calcium and vitamin D. National Academies Press, Washington, DC, 2011; pp. 35–74.

  • 27

    Felsenfeld AJ, Rodriguez M, Aguilera-Tejero E. Dynamics of parathyroid hormone secretion in health and secondary hyperparathyroidism. Clin J Am Soc Nephrol. 2007; 2: 1283–1305.

  • 28

    Kuchay MS, Mishra SK, Farooqui KJ, et al. Hypercalcemia of advanced chronic liver disease: a forgotten clinical entity. Clin Cases Miner Bone Metab. 2016; 13: 15–18.

  • 29

    Roskams T, Willems M, Campos RV, et al. Parathyroid hormone-related peptide expression in primary and metastatic liver tumours. Histopathology 1993; 23: 519–525.

  • 30

    Gröber U, Schmidt J, Kisters K. Magnesium in prevention and therapy. Nutrients 2015; 7: 8199–8226.

  • 31

    Karandish M, Tamimi M, Shayesteh AA, et al. The effect of magnesium supplementation and weight loss on liver enzymes in patients with nonalcoholic fatty liver disease. J Res Med Sci. 2013; 18: 573–579.

  • 32

    Agarwal A, Avarabeel S, Choudhary NS, et al. Correlation of trace elements in patients of chronic liver disease with respect to child-turcotte-pugh scoring system. J Clin Diagn Res. 2017; 11: OC25–OC28.

  • 33

    Anderson RA. Chromium as an essential nutrient for humans. Regul Toxicol Pharmacol. 1997; 26: S35–S41.

  • 34

    Chen WY, Chen CJ, Liu CH, et al. Chromium attenuates high-fat diet-induced nonalcoholic fatty liver disease in KK/HlJ mice. Biochem Biophys Res Commun. 2010; 397: 459–464.

  • 35

    Rehder D. Vanadium. Its role for humans. Met Ions Life Sci. 2013; 13: 139–169.

  • 36

    Liu J, Cui H, Liu X, et al. Dietary high vanadium causes oxidative damage-induced renal and hepatic toxicity in broilers. Biol Trace Elem Res. 2012; 145: 189–200.

  • 37

    Farooq MA, Dietz KJ. Silicon as versatile player in plant and human biology: overlooked and poorly understood. Front Plant Sci. 2015; 6: 994.

  • 38

    Liu T, Li L, Fu C, et al. Pathological mechanisms of liver injury caused by continuous intraperitoneal injection of silica nanoparticles. Biomaterials 2012; 33: 2399–2407.

  • 39

    Schwarz G. Molybdenum cofactor and human disease. Curr Opin Chem Biol. 2016; 31: 179–187.

  • 40

    Versieck J, Hoste J, Vanballenberghe L, et al. Serum molybdenum in diseases of the liver and biliary system. J Lab Clin Med. 1981; 97: 535–544.

The author instructions are available in PDF.
Instructions for Authors in Hungarian HERE.

Mendeley citation style is available HERE.

 

MANUSCRIPT SUBMISSION

  • Impact Factor (2019): 0.497
  • Scimago Journal Rank (2018): 0.176
  • SJR Hirsch-Index (2018): 20
  • SJR Quartile Score (2018): Q3 Medicine (miscellaneous)
  • Impact Factor (2018): 0.564
  • Scimago Journal Rank (2018): 0.193
  • SJR Hirsch-Index (2018): 18
  • SJR Quartile Score (2018): Q3 Medicine (miscellaneous)

Language: Hungarian

Founded in 1857
Publication: Weekly, one volume of 52 issues annually

Senior editors

Editor(s)-in-Chief: Papp Zoltán

Read the professional career of Papp Zoltán HERE.

 

Editorial Board

Click for the Editorial Board

Akadémiai Kiadó
Address: Prielle Kornélia u. 21-35. H-1117 Budapest, Hungary
Phone: (+36 1) 464 8235 ---- Fax: (+36 1) 464 8221
Email: orvosihetilap@akkrt.hu