View More View Less
  • 1 Szent Imre Egyetemi Oktatókórház, Budapest, Tétényi út 12–16., 1115
  • 2 Heim Pál Országos Gyermekgyógyászati Intézet, Budapest
  • 3 Semmelweis Egyetem, Budapest
  • 4 Magyar Honvédség Egészségügyi Központ, Budapest
  • 5 Szent Imre Egyetemi Oktatókórház, Budapest
  • 6 Semmelweis Egyetem, Budapest
Open access

Absztrakt:

A Chapel Hill-i Konszenzuskonferencia által megfogalmazott beosztás szerint az óriássejtes arteritis és a Takayasu-arteritis tartozik a nagyérvasculitisek csoportjába. E kórállapotok felismerése döntően a klinikai kép értékelésén, valamint a különböző vascularis képalkotó módszerek alkalmazásán alapul. Az utóbbi lehetőséggel kapcsolatban az elmúlt években jelentős technológiai fejlődés figyelhető meg, amely már nemcsak a diagnózis felállítását, hanem a betegség kiterjedtségének és az érfali gyulladás fokának a megítélését is lehetővé teszi. Ezenfelül az érfali gyulladás későbbi szövődményeinek felismerése is lehetővé válik. Az ultrahang, a komputertomográfia és a mágnesesrezonancia-vizsgálat, valamint a pozitronemissziós tomográfia képviselik azokat a képalkotó modalitásokat, amelyek a bennük rejlő lehetőségek miatt elengedhetetlenek az érintett betegek felismeréséhez, valamint hatékony kezelésük és követésük tervezéséhez. Az ismeretek összefoglalása számos, az érintett betegek gondozásában potenciálisan érintett szakterület érdeklődésére tarthat számot. Orv Hetil. 2020; 161(23): 939–950.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1

    Jennette JC, Falk RJ, Bacon PA, et al. 2012 revised International Chapel Hill Consensus Conference Nomenclature of Vasculitides. Arthritis Rheum. 2013; 65: 1–11.

  • 2

    Prieto-Gonzalez S, Espigol-Frigole G, Garcia-Martinez A, et al. The expanding role of imaging in systemic vasculitis. Rheum Dis Clin North Am. 2016; 42: 733–751.

  • 3

    Keser G, Aksu K. Diagnosis and differential diagnosis of large-vessel vasculitides. Rheumatol Int. 2019; 39: 169–185.

  • 4

    Berger CT, Sommer G, Aschwanden M, et al. The clinical benefit of imaging in the diagnosis and treatment of giant cell arteritis. Swiss Medical Wkly. 2018; 148: w14661.

  • 5

    Guggenberger K, Bley T. Imaging in large vessel vasculitides. Rofo 2019; 191: 1083–1090.

  • 6

    Hunder GG, Bloch DA, Michel BA, et al. The American College of Rheumatology 1990 criteria for the classification of giant cell arteritis. Arthritis Rheum. 1990; 33: 1122–1128.

  • 7

    Arend WP, Michel BA, Bloch DA, et al. The American College of Rheumatology 1990 criteria for the classification of Takayasu arteritis. Arthritis Rheum. 1990; 33: 1129–1134.

  • 8

    Seeliger B, Sznajd J, Robson JC, et al. Are the 1990 American College of Rheumatology vasculitis classification criteria still valid? Rheumatology (Oxford) 2017; 56: 1154–1161.

  • 9

    Dejaco C, Duftner C, Buttgereit F, et al. The spectrum of giant cell arteritis and polymyalgia rheumatica: revisiting the concept of the disease. Rheumatology (Oxford) 2017; 56: 506–515.

  • 10

    Muratore F, Kermani TA, Crowson CS, et al. Large-vessel dilatation in giant cell arteritis: a different subset of disease? Arthritis Care Res (Hoboken). 2018; 70: 1406–1411.

  • 11

    Martinez-Taboada VM, Alvarez L, RuizSoto M, et al. Giant cell arteritis and polymyalgia rheumatica: role of cytokines in the pathogenesis and implications for treatment. Cytokine 2008; 44: 207–220.

  • 12

    Zhu FP, Luo S, Wang ZJ, et al. Takayasu arteritis: imaging spectrum at multidetector CT angiography. Br J Radiol. 2012; 85: e1282–e1292.

  • 13

    University of Oxford, Medical Sciences Division, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences. Diagnostic and Classification Criteria in Vasculitis Study (DCVAS). NDORMS, Oxford, 2017. Available from: https://research.ndorms.ox.ac.uk/public/dcvas/index.php [accessed: February 20, 2020].

  • 14

    Dejaco C, Ramiro S, Duftner C, et al. EULAR recommendations for the use of imaging in large vessel vasculitis in clinical practice. Ann Rheum Dis. 2018; 77: 636–643.

  • 15

    Schmidt WA, Kraft HE, Völker L, et al. Colour Doppler sonography to diagnose temporal arteritis. Lancet 1995; 345: 866.

  • 16

    Schmidt WA. Ultrasound in the diagnosis and management of giant cell arteritis. Rheumatology (Oxford) 2018; 57(Suppl 2): ii22–ii31.

  • 17

    Monti S, Floris A, Ponte C, et al. The use of ultrasound to assess giant cell arteritis: review of the current evidence and practical guide for the rheumatologist. Rheumatology (Oxford) 2018; 57: 227–235.

  • 18

    Aschwanden M, Daikeler T, Kesten F, et al. Temporal artery compression sign – a novel ultrasound finding for the diagnosis of giant cell arteritis. Ultraschall Med. 2013; 34: 47–50.

  • 19

    Schäfer VS, Juche A, Ramiro S, et al. Ultrasound cut-off values for intima-media thickness of temporal, facial and axillary arteries in giant cell arteritis. Rheumatology (Oxford) 2017; 56: 1479–1483. [Correction: Rheumatology (Oxford) 2017; 56: 1632.]

  • 20

    Czihal M, Lottspeich C, Hoffmann U. Ultrasound imaging in the diagnosis of large vessel vasculitis. VASA 2017; 46: 241–253.

  • 21

    Luqmani R, Lee E, Singh S, et al. The role of ultrasound compared to biopsy of temporal arteries in the diagnosis and treatment of giant cell arteritis (TABUL): a diagnostic accuracy and cost-effectiveness study. Health Technol Assess. 2016; 20: 1–238.

  • 22

    Muratore F, Pipitone N, Salvarani C, et al. Imaging of vasculitis: state of the art. Best Pract Res Clin Rheumatol. 2016; 30: 688–706.

  • 23

    Holm PW, Sandovici M, Slart RH, et al. Vessel involvement in giant cell arteritis: an imaging approach. J Cardiovasc Surg (Torino). 2016; 57: 127–136.

  • 24

    Kolossváry E, Kollár A, Pintér H, et al. Bilateral axillobrachial and external carotid artery manifestation of giant cell arteritis: important role of color duplex ultrasonography in the diagnosis. Int Angiol. 2005; 24: 202–205.

  • 25

    Monti S, Águeda AF, Luqmani RA, et al. Systematic literature review informing the 2018 update of the EULAR recommendation for the management of large vessel vasculitis: focus on giant cell arteritis. RMD Open 2019; 5: e001003.

  • 26

    Kim SY, Park JH, Chung JW, et al. Follow-up CT evaluation of the mural changes in active Takayasu arteritis. Korean J Radiol. 2007; 8: 286–294.

  • 27

    Duftner C, Dejaco C, Sepriano A, et al. Imaging in diagnosis, outcome prediction and monitoring of large vessel vasculitis: a systematic literature review and meta-analysis informing the EULAR recommendations. RMD Open 2018; 4: e000612.

  • 28

    Bley TA, Uhl M, Carew J, et al. Diagnostic value of high-resolution MR imaging in giant cell arteritis. AJNR Am J Neuroradiol. 2007; 28: 1722–1727.

  • 29

    Guggenberger KV, Bley TA. Magnetic resonance imaging and magnetic resonance angiography in large-vessel vasculitides. Clin Exp Rheumatol. 2018; 36(Suppl 114): 103–107.

  • 30

    Barra L, Kanji T, Malette J, et al. Imaging modalities for the diagnosis and disease activity assessment of Takayasu’s arteritis: a systematic review and meta-analysis. Autoimmun Rev. 2018; 17: 175–187.

  • 31

    Rosenblum JS, Quinn KA, Rimland CA, et al. Clinical factors associated with time-specific distribution of 18F-fluorodeoxyglucose in large-vessel vasculitis. Sci Rep. 2019; 9: 15180.

  • 32

    Jiemy WF, Heeringa P, Kamps JA, et al. Positron emission tomography (PET) and single photon emission computed tomography (SPECT) imaging of macrophages in large vessel vasculitis: Current status and future prospects. Autoimmun Rev. 2018; 17: 715–726.

  • 33

    Slart RH, et al. FDG-PET/CT(A) imaging in large vessel vasculitis and polymyalgia rheumatica: joint procedural recommendation of the EANM, SNMMI, and the PET Interest Group (PIG), and endorsed by the ASNC. Eur J Nucl Med Mol Imaging 2018; 45: 1250–1269.

  • 34

    Koster MJ, Matteson EL, Warrington KJ. Large-vessel giant cell arteritis: diagnosis, monitoring and management. Rheumatology (Oxford) 2018; 57(Suppl 2): ii32–ii42.

  • 35

    Padoan R, Crimì F, Felicetti M, et al. Fully integrated 18F-FDG PET/MR in large vessel vasculitis. Q J Nucl Med Mol Imaging 2019 Oct 9. . [Epub ahead of print]

    • Crossref
    • Export Citation
  • 36

    Sreih AG, Alibaz-Oner F, Kermani TA, et al. Development of a core set of outcome measures for large-vessel vasculitis: report from OMERACT 2016. J Rheumatol. 2017; 44: 1933–1937.

  • 37

    Nakagomi D, Cousins C, Sznajd J, et al. Development of a score for assessment of radiologic damage in large-vessel vasculitis (combined arteritis damage score, CARDS). Clin Exp Rheumatol. 2017; 35(Suppl 103): 139–145.

  • 38

    Tombetti E, Godi C, Ambrosi A, et al. Novel angiographic scores for evaluation of large vessel vasculitis. Sci Rep. 2018; 8: 15979.

  • 39

    Soriano A, Pazzola G, Boiardi L, et al. Distribution patterns of 18F-fluorodeoxyglucose in large vessels of Takayasu’s and giant cell arteritis using positron emission tomography. Clin Exp Rheumatol. 2018; 36(Suppl 111): 99–106.

  • 40

    Germano G, Macchioni P, Possemato N, et al. Contrast-enhanced ultrasound of the carotid artery in patients with large vessel vasculitis: correlation with positron emission tomography findings. Arthritis Care Res (Hoboken). 2017; 69: 143–149.

  • 41

    Sinha D, Mondal S, Nag A, et al. Development of a colour Doppler ultrasound scoring system in patients of Takayasu’s arteritis and its correlation with clinical activity score (ITAS 2010). Rheumatology (Oxford) 2013; 52: 2196–2202.

  • 42

    Papa M, De Cobelli F, Baldissera E, et al. Takayasu arteritis: intravascular contrast medium for MR angiography in the evaluation of disease activity. Am J Roentgenol. 2012; 198: W279–W284.

  • 43

    Spira D, Xenitidis T, Henes J, et al. MRI parametric monitoring of biological therapies in primary large vessel vasculitides: a pilot study. Br J Radiol. 2016; 89: 20150892.

  • 44

    de Boysson H, Liozon E, Lambert M, et al. 18F-fluorodeoxyglucose positron emission tomography and the risk of subsequent aortic complications in giant-cell arteritis: a multicenter cohort of 130 patients. Medicine (Baltimore) 2016; 95: e3851.

  • 45

    Dellavedova L, Carletto M, Faggioli P, et al. The prognostic value of baseline 18F-FDG PET/CT in steroid-naïve large-vessel vasculitis: introduction of volume-based parameters. Eur J Nucl Med Mol Imaging 2016; 43: 340–348.

  • 46

    Alexanderson-Rosas E, Monroy-Gonzalez AG, Juarez-Orozco LE, et al. [18F]-Sodium fluoride uptake in Takayasu arteritis. J Nucl Cardiol. 2017; 24: 1674–1679.

 

The author instructions are available in PDF.
Instructions for Authors in Hungarian HERE.

 

Mendeley citation style is available HERE.
  • Impact Factor (2019): 0.497
  • Scimago Journal Rank (2018): 0.176
  • SJR Hirsch-Index (2018): 20
  • SJR Quartile Score (2018): Q3 Medicine (miscellaneous)
  • Impact Factor (2018): 0.564
  • Scimago Journal Rank (2018): 0.193
  • SJR Hirsch-Index (2018): 18
  • SJR Quartile Score (2018): Q3 Medicine (miscellaneous)

Language: Hungarian

Founded in 1857
Publication: Weekly, one volume of 52 issues annually

Senior editors

Editor(s)-in-Chief: Papp Zoltán

Read the professional career of Papp Zoltán HERE.

 

Editorial Board

Click for the Editorial Board

Akadémiai Kiadó
Address: Prielle Kornélia u. 21-35. H-1117 Budapest, Hungary
Phone: (+36 1) 464 8235 ---- Fax: (+36 1) 464 8221
Email: orvosihetilap@akkrt.hu