View More View Less
  • 1 MTA–SE, Budapest
  • 2 Semmelweis Egyetem, Budapest, Bókay J. u. 54., 1083
Open access

Absztrakt:

A vese filtrációs alapegységei a glomerulusok, melyek passzív hemodinamikai feladatukon túl komplex szabályozási mechanizmusokban is részt vesznek. Ezek közül fontosak az immunmediált folyamatok, amelyek a glomerularis homeostasis élettani biztosításán túl lokális szövetkárosító mechanizmusokat is elindíthatnak. Az immunológiai eredetű krónikus glomerularis betegségek gyakori okai a végstádiumú vesebetegség kialakulásának. Az immunrendszer kétélű kardként részt vesz a vese fiziológiás állapotának fenntartásában, de emellett meghatározó szerepe van a glomerularis károsodások kiváltásában. A nem megfelelően szabályozott, túlzott mértékű immunválasz felelős a glomerulonephritisek jelentős részéért, mely folyamat során károsodhat a glomerulusokat alkotó valamennyi strukturális és sejtes elem, beleértve a glomerularis bazálmembránt, a mesangialis és kapilláris-endothelsejteket, a podocytákat, valamint a parietalis epithelsejtréteget. Közleményünkben az egyes glomerularis komponenseknek, valamint a természetes és adaptív immunrendszernek a glomeruluskárosodásban betöltött szerepét foglaljuk össze. Orv Hetil. 2020; 161(24): 993–1001.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1

    Jha V, Garcia-Garcia G, Iseki K, et al. Chronic kidney disease: global dimension and perspectives. Lancet 2013; 382: 260–272. [Correction: Lancet 2013; 382: 208.]

  • 2

    Woroniecki RP, Schnaper HW. Progression of glomerular and tubular disease in pediatrics. Semin Nephrol. 2009; 29: 412–424.

  • 3

    Kitching AR, Hutton HL. The players: cells involved in glomerular disease. Clin J Am Soc Nephrol. 2016; 11: 1664–1674.

  • 4

    Nagata M. Immune-mediated glomerular injury. In: Avner E, Harmon W, Niaudet P, et al. (eds.) Pediatric nephrology. Springer, Berlin, Heidelberg, 2009; pp. 703–742.

  • 5

    Su H, Lei CT, Zhang C. Interleukin-6 signaling pathway and its role in kidney disease: an update. Front Immunol. 2017; 8: 405.

  • 6

    Nadasdy T, Laszik Z, Blick KE, et al. Proliferative activity of intrinsic cell populations in the normal human kidney. J Am Soc Nephrol. 1994; 4: 2032–2039.

  • 7

    Steffes MW, Østerby R, Chavers B, et al. Mesangial expansion as a central mechanism for loss of kidney function in diabetic patients. Diabetes 1989; 38: 1077–1081.

  • 8

    Miner JH. The glomerular basement membrane. Exp Cell Res. 2012; 318: 973–978.

  • 9

    McAdoo SP, Pusey CD. Anti-glomerular basement membrane disease. Clin J Am Soc Nephrol. 2017; 12: 1162–1172.

  • 10

    Weening JJ, D’Agati VD, Schwartz MM, et al. The classification of glomerulonephritis in systemic lupus erythematosus revisited. J Am Soc Nephrol. 2004; 15: 241–250. [Correction: J Am Soc Nephrol. 2004; 15: 835–836.]

  • 11

    Fan X, Rai A, Kambham N, et al. Endometrial VEGF induces placental sFLT1 and leads to pregnancy complications. J Clin Invest. 2014; 124: 4941–4952.

  • 12

    Müller-Deile J, Schiffer M. Renal involvement in preeclampsia: similarities to VEGF ablation therapy. J Pregnancy 2011; 2011: 176973.

  • 13

    Montgomery RA, Tatapudi VS, Leffell MS, et al. HLA in transplantation. Nat Rev Nephrol. 2018; 14: 558–570.

  • 14

    Ruggenenti P, Noris M, Remuzzi G. Thrombotic microangiopathy, hemolytic uremic syndrome, and thrombotic thrombocytopenic purpura. Kidney Int. 2001; 60: 831–846.

  • 15

    Lee HS. Paracrine role for TGF-β-induced CTGF and VEGF in mesangial matrix expansion in progressive glomerular disease. Histol Histopathol. 2012; 27: 1131–1141.

  • 16

    Farquhar MG, Saito A, Kerjaschki D, et al. The Heymann nephritis antigenic complex: megalin (gp330) and RAP. J Am Soc Nephrol. 1995; 6: 35–47.

  • 17

    Xia H, Bao W, Shi S. Innate immune activity in glomerular podocytes. Front Immunol. 2017; 8: 122.

  • 18

    Shankland SJ, Smeets B, Pippin JW, et al. The emergence of the glomerular parietal epithelial cell. Nat Rev Nephrol. 2014; 10: 158–173.

  • 19

    Ohse T, Pippin JW, Chang AM, et al. The enigmatic parietal epithelial cell is finally getting noticed: a review. Kidney Int. 2009; 76: 1225–1238.

  • 20

    Kurts C, Panzer U, Anders H-J, et al. The immune system and kidney disease: basic concepts and clinical implications. Nat Rev Immunol. 2013; 13: 738–753.

  • 21

    Couser WG. Basic and translational concepts of immune-mediated glomerular diseases. J Am Soc Nephrol. 2012; 23: 381–399.

  • 22

    Borchers AT, Leibushor N, Naguwa SM, et al. Lupus nephritis: a critical review. Autoimmun Rev. 2012; 12: 174–194.

  • 23

    Giannakakis K, Faraggiana T. Histopathology of lupus nephritis. Clin Rev Allergy Immunol. 2011; 40: 170–180.

  • 24

    McAdoo SP, Pusey CD. Anti-glomerular basement membrane disease. Clin J Am Soc Nephrol. 2017; 12: 1162–1172.

  • 25

    Yoshida M, Sasaki M, Sugisaki K, et al. Neutrophil extracellular trap components in fibrinoid necrosis of the kidney with myeloperoxidase-ANCA-associated vasculitis. Clin Kidney J. 2013; 6: 308–312.

  • 26

    Nangaku M, Couser WG. Mechanisms of immune-deposit formation and the mediation of immune renal injury. Clin Exp Nephrol. 2005; 9: 183–191.

  • 27

    Devi S, Li A, Westhorpe CL, et al. Multiphoton imaging reveals a new leukocyte recruitment paradigm in the glomerulus. Nat Med. 2013; 19: 107–112. [Correction: Nat Med. 2016; 22: 446.]

  • 28

    Kuligowski MP, Kitching AR, Hickey MJ. Leukocyte recruitment to the inflamed glomerulus: a critical role for platelet-derived P-selectin in the absence of rolling. J Immunol. 2006; 176: 6991–6999.

  • 29

    Bromley SK, Burack WR, Johnson KG, et al. The immunological synapse. Annu Rev Immunol. 2001; 19: 375–396.

  • 30

    Leibler C, Thiolat A, Elsner RA, et al. Costimulatory blockade molecules and B-cell–mediated immune response: current knowledge and perspectives. Kidney Int. 2019; 95: 774–786.

  • 31

    Golubovskaya V, Wu L. Different subsets of T cells, memory, effector functions, and CAR-T immunotherapy. Cancers (Basel) 2016; 8: 36.

  • 32

    Kaiko GE, Horvat JC, Beagley KW, et al. Immunological decision-making: how does the immune system decide to mount a helper T-cell response? Immunology 2008; 123: 326–338.

  • 33

    Krebs CF, Schmidt T, Riedel JH, et al. T helper type 17 cells in immune-mediated glomerular disease. Nat Rev Nephrol. 2017; 13: 647–659.

  • 34

    Wu J, Hicks J, Borillo J, et al. CD4+ T cells specific to a glomerular basement membrane antigen mediate glomerulonephritis. J Clin Invest. 2002; 109: 517–524.

  • 35

    Jennette JC, Nachman PH. ANCA glomerulonephritis and vasculitis. Clin J Am Soc Nephrol. 2017; 12: 1680–1691.

  • 36

    Kessenbrock K, Krumbholz M, Schönermarck U, et al. Netting neutrophils in autoimmune small-vessel vasculitis. Nat Med. 2009; 15: 623–625.

  • 37

    Chung AC, Lan HY. Chemokines in renal injury. J Am Soc Nephrol. 2011; 22: 802–809.

  • 38

    Smith KD. Toll-like receptors in kidney disease. Curr Opin Nephrol Hypertens. 2009; 18: 189.

  • 39

    Han HI, Skvarca LB, Espiritu EB, et al. The role of macrophages during acute kidney injury: destruction and repair. Pediatr Nephrol. 2019; 34: 561–569.

  • 40

    Tang PM, Nikolic-Paterson DJ, Lan HY. Macrophages: versatile players in renal inflammation and fibrosis. Nat Rev Nephrol. 2019; 15: 144–158.

  • 41

    Thurman JM, Nester CM. All things complement. Clin J Am Soc Nephrol. 2016; 11: 1856–1866.

  • 42

    Noris M, Remuzzi G. Atypical hemolytic-uremic syndrome. N Engl J Med. 2009; 361: 1676–1687.

  • 43

    Thurman JM. Many drugs for many targets: novel treatments for complement-mediated glomerular disease. Nephrol Dial Transplant. 2017; 32(Suppl 1): i57–i64.

  • 44

    Erdei A, Sándor N, Mácsik-Valent B, et al. The versatile functions of complement C3-derived ligands. Immunol Rev. 2016; 274: 127–140.

  • 45

    Janeway CA Jr, Travers P, Walport M, et al. The complement system and innate immunity. In: Janeway CA Jr, Travers P, Walport M, et al. Immunobiology: the immune system in health and disease. 5th edition. Garland Science, New York, NY, 2001; pp.