A vese filtrációs alapegységei a glomerulusok, melyek passzív hemodinamikai feladatukon túl komplex szabályozási mechanizmusokban is részt vesznek. Ezek közül fontosak az immunmediált folyamatok, amelyek a glomerularis homeostasis élettani biztosításán túl lokális szövetkárosító mechanizmusokat is elindíthatnak. Az immunológiai eredetű krónikus glomerularis betegségek gyakori okai a végstádiumú vesebetegség kialakulásának. Az immunrendszer kétélű kardként részt vesz a vese fiziológiás állapotának fenntartásában, de emellett meghatározó szerepe van a glomerularis károsodások kiváltásában. A nem megfelelően szabályozott, túlzott mértékű immunválasz felelős a glomerulonephritisek jelentős részéért, mely folyamat során károsodhat a glomerulusokat alkotó valamennyi strukturális és sejtes elem, beleértve a glomerularis bazálmembránt, a mesangialis és kapilláris-endothelsejteket, a podocytákat, valamint a parietalis epithelsejtréteget. Közleményünkben az egyes glomerularis komponenseknek, valamint a természetes és adaptív immunrendszernek a glomeruluskárosodásban betöltött szerepét foglaljuk össze. Orv Hetil. 2020; 161(24): 993–1001.
Jha V, Garcia-Garcia G, Iseki K, et al. Chronic kidney disease: global dimension and perspectives. Lancet 2013; 382: 260–272. [Correction: Lancet 2013; 382: 208.]
Woroniecki RP, Schnaper HW. Progression of glomerular and tubular disease in pediatrics. Semin Nephrol. 2009; 29: 412–424.
Kitching AR, Hutton HL. The players: cells involved in glomerular disease. Clin J Am Soc Nephrol. 2016; 11: 1664–1674.
Nagata M. Immune-mediated glomerular injury. In: Avner E, Harmon W, Niaudet P, et al. (eds.) Pediatric nephrology. Springer, Berlin, Heidelberg, 2009; pp. 703–742.
Su H, Lei CT, Zhang C. Interleukin-6 signaling pathway and its role in kidney disease: an update. Front Immunol. 2017; 8: 405.
Nadasdy T, Laszik Z, Blick KE, et al. Proliferative activity of intrinsic cell populations in the normal human kidney. J Am Soc Nephrol. 1994; 4: 2032–2039.
Steffes MW, Østerby R, Chavers B, et al. Mesangial expansion as a central mechanism for loss of kidney function in diabetic patients. Diabetes 1989; 38: 1077–1081.
Miner JH. The glomerular basement membrane. Exp Cell Res. 2012; 318: 973–978.
McAdoo SP, Pusey CD. Anti-glomerular basement membrane disease. Clin J Am Soc Nephrol. 2017; 12: 1162–1172.
Weening JJ, D’Agati VD, Schwartz MM, et al. The classification of glomerulonephritis in systemic lupus erythematosus revisited. J Am Soc Nephrol. 2004; 15: 241–250. [Correction: J Am Soc Nephrol. 2004; 15: 835–836.]
Fan X, Rai A, Kambham N, et al. Endometrial VEGF induces placental sFLT1 and leads to pregnancy complications. J Clin Invest. 2014; 124: 4941–4952.
Müller-Deile J, Schiffer M. Renal involvement in preeclampsia: similarities to VEGF ablation therapy. J Pregnancy 2011; 2011: 176973.
Montgomery RA, Tatapudi VS, Leffell MS, et al. HLA in transplantation. Nat Rev Nephrol. 2018; 14: 558–570.
Ruggenenti P, Noris M, Remuzzi G. Thrombotic microangiopathy, hemolytic uremic syndrome, and thrombotic thrombocytopenic purpura. Kidney Int. 2001; 60: 831–846.
Lee HS. Paracrine role for TGF-β-induced CTGF and VEGF in mesangial matrix expansion in progressive glomerular disease. Histol Histopathol. 2012; 27: 1131–1141.
Farquhar MG, Saito A, Kerjaschki D, et al. The Heymann nephritis antigenic complex: megalin (gp330) and RAP. J Am Soc Nephrol. 1995; 6: 35–47.
Xia H, Bao W, Shi S. Innate immune activity in glomerular podocytes. Front Immunol. 2017; 8: 122.
Shankland SJ, Smeets B, Pippin JW, et al. The emergence of the glomerular parietal epithelial cell. Nat Rev Nephrol. 2014; 10: 158–173.
Ohse T, Pippin JW, Chang AM, et al. The enigmatic parietal epithelial cell is finally getting noticed: a review. Kidney Int. 2009; 76: 1225–1238.
Kurts C, Panzer U, Anders H-J, et al. The immune system and kidney disease: basic concepts and clinical implications. Nat Rev Immunol. 2013; 13: 738–753.
Couser WG. Basic and translational concepts of immune-mediated glomerular diseases. J Am Soc Nephrol. 2012; 23: 381–399.
Borchers AT, Leibushor N, Naguwa SM, et al. Lupus nephritis: a critical review. Autoimmun Rev. 2012; 12: 174–194.
Giannakakis K, Faraggiana T. Histopathology of lupus nephritis. Clin Rev Allergy Immunol. 2011; 40: 170–180.
McAdoo SP, Pusey CD. Anti-glomerular basement membrane disease. Clin J Am Soc Nephrol. 2017; 12: 1162–1172.
Yoshida M, Sasaki M, Sugisaki K, et al. Neutrophil extracellular trap components in fibrinoid necrosis of the kidney with myeloperoxidase-ANCA-associated vasculitis. Clin Kidney J. 2013; 6: 308–312.
Nangaku M, Couser WG. Mechanisms of immune-deposit formation and the mediation of immune renal injury. Clin Exp Nephrol. 2005; 9: 183–191.
Devi S, Li A, Westhorpe CL, et al. Multiphoton imaging reveals a new leukocyte recruitment paradigm in the glomerulus. Nat Med. 2013; 19: 107–112. [Correction: Nat Med. 2016; 22: 446.]
Kuligowski MP, Kitching AR, Hickey MJ. Leukocyte recruitment to the inflamed glomerulus: a critical role for platelet-derived P-selectin in the absence of rolling. J Immunol. 2006; 176: 6991–6999.
Bromley SK, Burack WR, Johnson KG, et al. The immunological synapse. Annu Rev Immunol. 2001; 19: 375–396.
Leibler C, Thiolat A, Elsner RA, et al. Costimulatory blockade molecules and B-cell–mediated immune response: current knowledge and perspectives. Kidney Int. 2019; 95: 774–786.
Golubovskaya V, Wu L. Different subsets of T cells, memory, effector functions, and CAR-T immunotherapy. Cancers (Basel) 2016; 8: 36.
Kaiko GE, Horvat JC, Beagley KW, et al. Immunological decision-making: how does the immune system decide to mount a helper T-cell response? Immunology 2008; 123: 326–338.
Krebs CF, Schmidt T, Riedel JH, et al. T helper type 17 cells in immune-mediated glomerular disease. Nat Rev Nephrol. 2017; 13: 647–659.
Wu J, Hicks J, Borillo J, et al. CD4+ T cells specific to a glomerular basement membrane antigen mediate glomerulonephritis. J Clin Invest. 2002; 109: 517–524.
Jennette JC, Nachman PH. ANCA glomerulonephritis and vasculitis. Clin J Am Soc Nephrol. 2017; 12: 1680–1691.
Kessenbrock K, Krumbholz M, Schönermarck U, et al. Netting neutrophils in autoimmune small-vessel vasculitis. Nat Med. 2009; 15: 623–625.
Chung AC, Lan HY. Chemokines in renal injury. J Am Soc Nephrol. 2011; 22: 802–809.
Smith KD. Toll-like receptors in kidney disease. Curr Opin Nephrol Hypertens. 2009; 18: 189.
Han HI, Skvarca LB, Espiritu EB, et al. The role of macrophages during acute kidney injury: destruction and repair. Pediatr Nephrol. 2019; 34: 561–569.
Tang PM, Nikolic-Paterson DJ, Lan HY. Macrophages: versatile players in renal inflammation and fibrosis. Nat Rev Nephrol. 2019; 15: 144–158.
Thurman JM, Nester CM. All things complement. Clin J Am Soc Nephrol. 2016; 11: 1856–1866.
Noris M, Remuzzi G. Atypical hemolytic-uremic syndrome. N Engl J Med. 2009; 361: 1676–1687.
Thurman JM. Many drugs for many targets: novel treatments for complement-mediated glomerular disease. Nephrol Dial Transplant. 2017; 32(Suppl 1): i57–i64.
Erdei A, Sándor N, Mácsik-Valent B, et al. The versatile functions of complement C3-derived ligands. Immunol Rev. 2016; 274: 127–140.
Janeway CA Jr, Travers P, Walport M, et al. The complement system and innate immunity. In: Janeway CA Jr, Travers P, Walport M, et al. Immunobiology: the immune system in health and disease. 5th edition. Garland Science, New York, NY, 2001; pp.