A szívelégtelenség napjaink egyik fontos népbetegsége. Zajlása során a neurohumoralis szabályzás kórossá válik. A cardiovascularis autonóm regulációt a csökkenő paraszimpatikus aktivitás és a fokozott szimpatikus aktivitás jellemzi. A paraszimpatikus (cardiovagalis) hatásokat jól tükrözi a pulzusszám, a szimpatikus aktivitás azonban nehezen vizsgálható. A vázizomzathoz haladó vazomotorrostokat tartalmazó perifériás idegek mikroneurográfiás vizsgálata az „izom szimpatikus idegaktivitásról” (MSNA) szolgáltat közvetlen információt. Az MSNA jól tükrözi a szív felé irányuló szimpatikus aktivitást, s jól korrelál a keringő katecholaminszintekkel is. Az utóbbival szemben azonban a rövid távú, pillanatszerűen zajló szimpatikus válaszok tanulmányozását is lehetővé teszi. Számos kórképben (hypertensio, obesitas, szívizom-ischaemia, veseelégtelenség) figyeltek meg fokozott MSNA-t. Szívelégtelenségben szoros kapcsolatot mutat a klinikai súlyossággal, és erős prognosztikus értékkel bír. Közleményünkben az MSNA-vizsgálat történetét, élettani hátterét és klinikai jelentőségét mutatjuk be. Orv Hetil. 2020; 161(29): 1190–1199.
Ziaeian B, Fonarow GC. Epidemiology and aetiology of heart failure. Nat Rev Cardiol. 2016; 13: 368–378.
Ponikowski P, Voors AA, Anker SD, et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J. 2016; 37: 2129–2200. [Correction: Eur Heart J. 2016 Dec 30.]
Floras JS. Alterations in the sympathetic and parasympathetic nervous systems in heart failure. In: Felker GM, Mann D. (eds.) Heart failure: a companion to Braunwald’s heart disease. 4th edn. Elsevier, Amsterdam, 2019; pp. 181–200.
Cohn JN, Levine TB, Olivari MT, et al. Plasma norepinephrine as a guide to prognosis in patients with chronic congestive heart failure. N Engl J Med. 1984; 311: 819–823.
Vallbo ÅB. Microneurography: how it started and how it works. J Neurophysiol. 2018; 120: 1415–1427.
Shoemaker JK, Klassen SA, Badrow MB, et al. Fifty years of microneurography: insights into neural mechanisms in humans. J Neurophysiol. 2018; 119: 1731–1744.
Eckberg DL, Sleight P. Human baroreflexes in health and disease. Clarendon Press, Oxford, 1992.
Wallin BG, Sundlöf G, Eriksson BM, et al. Plasma noradrenaline correlates to sympathetic muscle nerve activity in normotensive man. Acta Physiol Scand. 1981; 111: 69–73.
White DW, Shoemaker JK, Raven PB. Methods and considerations for the analysis and standardization of assessing muscle sympathetic nerve activity in humans. Auton Neurosci. 2015; 193: 12–21.
Fagius J, Wallin BG. Sympathetic reflex latencies and conduction velocities in normal man. J Neurol Sci. 1980; 47: 433–448.
Sundlöf G, Wallin BG. Human muscle nerve sympathetic activity at rest. Relationship to blood pressure and age. J Physiol. 1978; 274: 621–637.
Wallin GB, Esler M, Dorward P, et al. Simultaneous measurements of cardiac noradrenaline spillover and sympathetic outflow to skeletal muscle in humans. J Physiol. 1992; 453: 45–58.
Rudas L, Crossman AA, Morillo CA, et al. Human sympathetic and vagal baroreflex responses to sequential nitroprusside and phenylephrine. Am J Physiol. 1999; 276: H1691–H1698.
Fagius J, Wallin BG, Sundlöf G, et al. Sympathetic outflow in man after anaesthesia of the glossopharyngeal and vagus nerves. Brain 1985; 108: 423–438.
Sundlöf G, Wallin BG. The variability of muscle nerve sympathetic activity in resting recumbent man. J Physiol. 1977; 272: 383–397.
Seals DR, Suwarno O, Joyner MJ, et al. Respiratory modulation of muscle sympathetic nerve activity in intact and lung denervated humans. Circ Res. 1993; 72: 440–454.
Eckberg DL. The human respiratory gate. J Physiol. 2003; 548: 339–352.
Charkoudian N, Wallin BG. Sympathetic neural activity to the cardiovascular system: integrator of systemic physiology and interindividual characteristics. Compr Physiol. 2014; 4: 825–850.
Grassi G, Pisano A, Bolignano D, et al. Sympathetic nerve traffic activation in essential hypertension and its correlates. Systemic review and meta-analyses. Hypertension 2018; 72: 483–491.
Lambert E, Straznicky N, Schlaich M, et al. Differing pattern of sympathoexcitation in normal-weight and obesity-related hypertension. Hypertension 2007; 50: 862–868.
Converse RL Jr, Jacobsen TN, Toto RD, et al. Sympathetic overactivity in patients with chronic renal failure. N Engl J Med. 1992; 327: 1912–1918.
Grassi G, Quarti-Trevano F, Seravalle G, et al. Early sympathetic activation in the initial clinical stages of chronic renal failure. Hypertension 2011; 57: 846–851.
Fagius J. Microneurographic findings in diabetic polyneuropathy with special reference to sympathetic nerve activity. Diabetologia 1982; 23: 415–420.
Somers VK, Dyken ME, Clary MP, et al. Sympathetic neural mechanisms in obstructive sleep apnea. J Clin Invest. 1995; 96: 1897–1904.
Heindl S, Lehnert M, Criée CP, et al. Marked sympathetic activation in patients with chronic respiratory failure. Am J Respir Crit Care Med. 2001; 164: 597–601.
Andreas S, Haarmann H, Klarner S, et al. Increased sympathetic nerve activity in COPD is associated with morbidity and mortality. Lung 2014; 192: 235–241.
Eckberg DL, Drabinsky M, Braunwald E. Defective cardiac parasympathetic control in patients with heart disease. N Engl J Med. 1971; 285: 877–883.
Kaye DM, Lefkovits J, Jennings GL, et al. Adverse consequences of high sympathetic nervous activity in the failing human heart. J Am Coll Cardiol. 1995; 26: 1257–1263.
Rundquist B, Elam M, Bergmann-Sverrisdottir Y, et al. Increased cardiac adrenergic drive precedes generalized sympathetic activation in human heart failure. Circulation 1997; 95: 169–175.
Grassi G, Bolla G, Quarti-Trevano F, et al. Sympathetic activation in congestive heart failure: reproducibility of neuroadrenergic markers. Eur J Heart Fail. 2008; 10: 1186–1191.
Leimbach WN Jr, Wallin BG, Victor RG, et al. Direct evidence from intraneural recordings for increased central sympathetic outflow in patients with heart failure. Circulation 1986; 73: 913–919.
Ferguson DS, Berg WJ, Sanders JS. Clinical and hemodynamic correlates of sympathetic nerve activity in normal humans and patients with heart failure: evidence from direct microneurographic recordings. J Am Coll Cardiol. 1990; 16: 1125–1134.
Floras JS. Sympathetic nervous system activation in human heart failure: clinical implications of an updated model. J Am Coll Cardiol. 2009; 54: 375–385.
Barretto AC, Santos AC, Munhoz R, et al. Increased muscle sympathetic nerve activity predicts mortality in heart failure patients. Int J Cardiol. 2009; 135: 302–307.
Antunes-Correa LM, Melo RC, Nobre TS, et al. Impact of gender on benefits of exercise training on sympathetic nerve activity and muscle blood flow in heart failure. Eur J Heart Fail. 2010; 12: 58–65.
Grassi G, Seravalle G, Cattaneo BM, et al. Sympathetic activation and loss of reflex sympathetic control in mild congestive heart failure. Circulation 1995; 92: 3206–3211.
Dibner-Dunlap ME, Smith ML, Kinugawa T, et al. Enalaprilat augments arterial and cardiopulmonary baroreflex control of sympathetic nerve activity in patients with heart failure. J Am Coll Cardiol. 1996; 27: 358–364.
Coats AJ, Clark AL, Piepoli M, et al. Symptomes and quality of life in heart failure: the muscle hypothesis. Br Heart J. 1994; 72: S35–S39.
Piepoli M, Clark AL, Volterrani M, et al. Contribution of muscle afferents to the hemodynamic, autonomic, and ventilatory responses to exercise in patients with chronic heart failure: effects of physical training. Circulation 1996; 93: 940–952.
Notarius CF, Atchison DJ, Floras JS. Impact of heart failure and exercise capacity on sympathetic response to handgrip exercise. Am J Physiol Heart Circ Physiol. 2001; 280: H969–H976.
Floras JS, Ponikowski P. The sympathetic/parasympathetic imbalance in heart failure with reduced ejection fraction. Eur Heart J. 2015; 36: 1974–1982.
Despas F, Lambert E, Vaccaro A, et al. Peripheral chemoreflex activation contributes to sympathetic baroreflex impairment in chronic heart failure. J Hypertens. 2012; 30: 753–760.
Goso Y, Asanoi H, Ishise H, et al. Respiratory modulation of muscle sympathetic nerve activity in patients with chronic heart failure. Circulation 2001; 104: 418–423.
Grassi G, Seravalle G, Bertinieri G, et al. Sympathetic and reflex abnormalities in heart failure secondary to ischaemic or idiopathic dilated cardiomyopathy. Clin Sci. 2001; 101: 141–146.
Notarius CF, Spaak J, Morris BL, et al. Comparison of muscle sympathetic activity in ischemic and nonischemic heart failure. J Card Fail. 2007; 13: 470–475.
Graham LN, Smith PA, Stoker JB, et al. Time course of sympathetic neural hyperactivity after uncomplicated acute myocardial infarction. Circulation 2002; 106: 793–797.
Grassi G, D’Arrigo G, Pisano A, et al. Sympathetic neural overdrive in congestive heart failure and its correlates: systematic reviews and meta-analysis. J Hypertens. 2019; 37: 1746–1756.
Verloop WL, Beeftink MM, Santema BT, et al. A systematic review concerning the relation between the sympathetic nervous system and heart failure with preserved left ventricular ejection fraction. PLoS ONE 2015; 10: e0117332.
Seravalle G, Quarti-Trevano F, Dell’Oro R, et al. Sympathetic and baroreflex alterations in congestive heart failure with preserved, midrange and reduced ejection fraction. J Hyperterns. 2019; 37: 443–448.