View More View Less
  • 1 Debreceni Egyetem Kenézy Gyula Egyetemi Kórház, Debrecen, Bartók Béla út 2–26., 4032
Open access

Absztrakt:

A súlyos trauma/politraumatizáció a halálozás gyakori oka, a fiatal korosztályban pedig a vezető halálozási ok. A korai halálozásért gyakran a kivérzés felelős. Ennek hátterében a vérzés megindulását követően, sokszor már korán kialakuló, a vérzést tovább fokozó traumás véralvadási zavar (TIC: trauma-induced coagulopathy) áll. Másrészről a vérzéses traumás sokk ellátásakor alkalmazott, nagy mennyiségű vérkészítmény, a masszív transzfúzió súlyos – akár halálos – szövődményekhez vezethet. A masszív traumás vérzés korszerű szemléletű, agresszív ellátása mind a kivérzés és halálozás, mind a késői szövődmények elkerülésében hatékony. Emellett e szemlélet szervesen illeszkedik a vérgazdálkodási koncepcióhoz. Az összefoglaló közlemény az akut trauma ellátásán belül a traumás vérzés, illetve a traumás véralvadási zavar korszerű, célirányos, preventív szemléletű ellátásával foglalkozik, a hangsúlyt az elvi háttérre helyezve. Célja, hogy az ilyen irányú ellátásban közvetlenül részt nem vevők is átlássák e tevékenység lényegét. Orv Hetil. 2020; 161(37): 1599–1605.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1

    Kauvar DS, Lefering R, Wade CE. Impact of hemorrhage on trauma outcome: an overview of epidemiology, clinical presentations, and therapeutic considerations. J Trauma 2006; 60(6 Suppl): S3–S11.

  • 2

    Chang R, Cardenas JC, Wade CE, et al. Advances in the understanding of trauma-induced coagulopathy. Blood 2016; 128: 1043–1049.

  • 3

    Maegele M, Schöchl H, Cohen MJ. An update on the coagulopathy of trauma. Shock 2014; 41(Suppl 1): 21–25.

  • 4

    MacLeod JB, Lynn M, McKenney MG, et al. Early coagulopathy predicts mortality in trauma. J Trauma 2003; 55: 39–44.

  • 5

    Maegele M, Lefering R, Yucel N, et al. Early coagulopathy in multiple injury: an analysis from the German Trauma Registry on 8724 patients. Injury 2007; 38: 298–304.

  • 6

    Hagemo JS, Christiaans SC, Stanworth SJ, et al. Detection of acute traumatic coagulopathy and massive transfusion requirements by means of rotational thromboelastometry: an international prospective validation study. Crit Care 2015; 19: 97.

  • 7

    Spahn DR, Bouillon B, Cerny V, et al. The European guideline on management of major bleeding and coagulopathy following trauma: fifth edition. Crit Care 2019; 23: 98.

  • 8

    Morrison CA, Carrick MM, Norman MA, et al. Hypotensive resuscitation strategy reduces transfusion requirements and severe postoperative coagulopathy in trauma patients with hemorrhagic shock: preliminary results of a randomized controlled trial. J Trauma 2011; 70: 652–663.

  • 9

    Babik B, Blaskó Gy, Fazakas J, et al. Management of life-threatening perioperative haemorrhages. [Az életveszélyes perioperatív vérzések ellátása. A Magyar Aneszteziológiai és Intenzív Terápiás Társaság szakmai irányelve, 2013.] Aneszteziol Int Ter. 2013; 43: 113–143.] [Hungarian]

  • 10

    Gonzalez E, Moore EE, Moore HB, et al. Goal-directed hemostatic resuscitation of trauma-induced coagulopathy: a pragmatic randomized clinical trial comparing a viscoelastic assay to conventional coagulation assays. Ann Surg. 2016; 263: 1051–1059.

  • 11

    Stensballe J, Henriksen HH, Johansson PI. Early haemorrhage control and management of trauma-induced coagulopathy: the importance of goal-directed therapy. Curr Opin Crit Care 2017; 23: 503–510.

  • 12

    Giancarelli A, Birrer KL, Alban RF, et al. Hypocalcemia in trauma patients receiving massive transfusion. J Surg Res. 2016; 202: 182–187.

  • 13

    Shakur H, Roberts I, Bautista R, et al. Effects of tranexamic acid on death, vascular occlusive events, and blood transfusion in trauma patients with significant haemorrhage (CRASH-2): a randomised, placebo-controlled trial. Lancet 2010; 376: 23–32.

  • 14

    Wohlauer MV, Moore EE, Thomas S, et al. Early platelet dysfunction: an unrecognized role in the acute coagulopathy of trauma. J Am Coll Surg. 2012; 214: 739–746.

  • 15

    Hagemo JS, Stanworth S, Juffermans NP, et al. Prevalence, predictors and outcome of hypofibrinogenaemia in trauma: a multicentre observational study. Crit Care 2014; 18: R52.

  • 16

    Harr JN, Moore EE, Ghasabyan A, et al. Functional fibrinogen assay indicates that fibrinogen is critical in correcting abnormal clot strength following trauma. Shock 2013; 39: 45–49.

  • 17

    Schlimp CJ, Voelckel W, Inaba K, et al. Estimation of plasma fibrinogen levels based on hemoglobin, base excess and Injury Severity Score upon emergency room admission. Crit Care 2013; 17: R137.

  • 18

    Nakamura Y, Ishikura H, Kushimoto S, et al. Fibrinogen level on admission is a predictor for massive transfusion in patients with severe blunt trauma: analyses of a retrospective multicentre observational study. Injury 2017; 48: 674–679.

  • 19

    McQuilten ZK, Wood EM, Bailey M, et al. Fibrinogen is an independent predictor of mortality in major trauma patients: a five-year statewide cohort study. Injury 2017; 48: 1074–1081.

  • 20

    Rourke C, Curry N, Khan S, et al. Fibrinogen levels during trauma hemorrhage, response to replacement therapy, and association with patient outcomes. J Thromb Haemost. 2012; 10: 1342–1351.

  • 21

    Watson GA, Sperry JL, Rosengart MR, et al. Fresh frozen plasma is independently associated with a higher risk of multiple organ failure and acute respiratory distress syndrome. J Trauma 2009; 67: 221–230.

  • 22

    McQuilten ZK, Crighton G, Brunskill S, et al. Optimal dose, timing and ratio of blood products in massive transfusion: results from a systematic review. Transfus Med Rev. 2018; 32: 6–15.

  • 23

    Holcomb JB, Tilley BC, Baraniuk S, et al. Transfusion of plasma, platelets, and red blood cells in a 1:1:1 vs a 1:1:2 ratio and mortality in patients with severe trauma: the PROPPR randomized clinical trial. JAMA 2015; 313: 471–482.

  • 24

    Csomós Á, Gál J. Cost-effectiveness of goal-directed coagulation management in clinical practice. [A célorientált alvadásgátló kezelés költséghatékonysága a mindennapi transzfúziós gyakorlatban.] Aneszteziol Int Ter. 2013; 43: 152–156. [Hungarian]

  • 25

    Schöchl H, Maegele M, Voelckel W. Fixed ratio versus goal-directed therapy in trauma. Curr Opin Anaesthesiol. 2016; 29: 234–244.

  • 26

    Dutton RP, Parr M, Tortella BJ, et al. Recombinant activated factor VII safety in trauma patients: results from the CONTROL trial. J Trauma 2011; 71: 12–19.

  • 27

    Hauser CJ, Boffard K, Dutton R, et al. Results of the CONTROL trial: efficacy and safety of recombinant activated factor VII in the management of refractory traumatic hemorrhage. J Trauma 2010; 69: 489–500.

  • 28

    Innerhofer P, Fries D, Mittermayr M, et al. Reversal of trauma-induced coagulopathy using first-line coagulation factor concentrates or fresh frozen plasma (RETIC): a single-centre, parallel-group, open-label, randomised trial. Lancet Haematol. 2017; 4: e258–e271. [Correction: Lancet Haematol. 2017; 4: e257.]

  • 29

    Nardi G, Agostini V, Rondinelli B, et al. Trauma-induced coagulopathy: impact of the early coagulation support protocol on blood product consumption, mortality and costs. Crit Care 2015; 19: 83.

  • 30

    Ogura T, Lefor AK, Masuda M, et al. Modified traumatic bleeding severity score: early determination of the need for massive transfusion. Am J Emerg Med. 2016; 34: 1097–1101.

  • 31

    Cantle PM, Cotton BA. Prediction of massive transfusion in trauma. Crit Care Clin. 2017; 33: 71–84.

  • 32

    Maegele M, Lefering R, Wafaisade A, et al. Revalidation and update of the TASH-score: a scoring system to predict the probability for massive transfusion as a surrogate for life-threatening haemorrhage after severe injury. Vox Sang. 2011; 100: 231–238.

  • 33

    Babik B, Fazakas J, Matusovits A, et al. Forced steps for making improvements in severe perioperative haemorrhage. [Lépéskényszerben – új feladatok az életveszélyes perioperatív vérzések ellátásában.] Orv Hetil. 2019; 160: 203–213. [Hungarian]