View More View Less
  • 1 Szegedi Tudományegyetem, Szeged, Semmelweis u. 6., 6725
Open access

Absztrakt:

A perifériás pulzus tapintása évezredeken keresztül az orvosok egyetlen eszköze volt a keringés megítélésére. A pulzus frekvenciájának, amplitúdójának és mintázatának vizsgálata olyan megfigyeléseket tett lehetővé, melyeket a modern orvostudomány gyakran megerősít, és igyekszünk a kórfolyamatokat pontosan feltárni. A klasszikus megfigyelések egyike a paradox pulzus (PP), mely eltérő kórállapotokban potenciálisan életveszélyes állapotokra, asztmás rohamra, pericardialis tamponádra vagy súlyos hypovolaemiára hívhatja fel a figyelmet. Összefoglalónkban bemutatjuk a PP magyarázatát, és szemléltetjük azt is, hogy miként értelmezhető a jelenség a modern orvosi eszközök világában. Orv Hetil. 2020; 161(38): 1629–1635.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1

    Hajar R. The pulse in ancient medicine. Part 1. Heart Views 2018; 19: 36–43.

  • 2

    Ghasemzadeh N, Zafari AM. A brief journey into the history of the arterial pulse. Cardiol Res Pract. 2011; 2011: 164832.

  • 3

    Woo HE, Fung CH. Remarkable physicians associated with pulsus paradoxus, the classic sign – Richard Lower and Adolf Kussmaul. Publication Date: September 2006. Available from: http://www.priory.com/homol/pulsus.htm [accessed: April 27, 2020].

  • 4

    Kussmaul A. About mediastino-pericarditis and the paradoxical pulse. [Über schwielige Mediastino-Pericarditis und den paradoxen Puls.] Berl Klin Wochenschr. 1873; 10: 433–435; 445–449; 461–464. [German]

  • 5

    Bilchick KC, Wise RA. Paradoxical physical findings described by Kussmaul: pulsus paradoxus and Kussmaul’s sign. Lancet 2002; 359: 1940–1942.

  • 6

    Sommerbrodt H. Gegen die Lehre vom Pulsus paradoxus. Berl Klin Wochenschr. 1877; 14: 615. [German]

  • 7

    Lewis T. Studies of the relationship between respiration and blood-pressure: part II. Facts bearing on the relationship of different factors in the production of respiratory curves of blood pressure. J Physiol. 1908; 37: 233–255.

  • 8

    Hales S. Statistical essays: containing haemastaticks. Vol 2. Innys, Manby and Woodward, London, 1733.

  • 9

    Dornhorst AC, Howard P, Leathart GL. Respiratory variations in blood pressure. Circulation 1952; 6: 553–558.

  • 10

    Hamzaoui O, Monnet X, Teboul JL. Pulsus paradoxus. Eur Respir J. 2013; 42: 1696–1705.

  • 11

    Bhattacharya M, Kallet RH, Ware LB, et al. Negative-pressure pulmonary edema. Chest 2016; 150: 927–933.

  • 12

    Buda AJ, Pinsky MR, Ingels NB Jr, et al. Effect of intrathoracic pressure on left ventricular performance. N Engl J Med. 1979; 301: 453–459.

  • 13

    Blaustein AS, Risser TA, Weiss JW, et al. Mechanisms of pulsus paradoxus during resistive respiratory loading and asthma. J Am Coll Cardiol. 1986; 8: 529–536. [Correction: J Am Coll Cardiol 1986; 8: 1244.]

  • 14

    Stalcup SA, Mellins RB. Mechanical forces producing pulmonary edema in acute asthma. N Engl J Med. 1977; 297: 592–596.

  • 15

    Jardin F, Farcot JC, Boisante L, et al. Mechanism of paradoxic pulse in bronchial asthma. Circulation 1982; 66: 887–894.

  • 16

    Takata M, Wise RA, Robotham JL. Effects of abdominal pressure on venous return: abdominal vascular zone conditions. J Appl Physiol. 1990; 69: 1961–1972.

  • 17

    Guilleminault C, Tilkian A, Dement WC. The sleep apnea syndromes. Annu Rev Med. 1976; 27: 465–486.

  • 18

    Gauchat HW, Katz LN. Observations on pulsus paradoxus (with special reference to pericardial effusions). I. Clinical. Arch Intern Med. 1924; 33: 350–370.

  • 19

    Dornhorst AC, Howard P, Leathart GL. Pulsus paradoxus. Lancet 1952; 1(6711): 746–748.

  • 20

    Appleton C, Gillam L, Koulogiannis K. Cardiac tamponade. Cardiol Clin. 2017; 35: 525–537.

  • 21

    Meltser H, Kalaria VG. Cardiac tamponade. Catheter Cardiovasc Interv. 2005; 64: 245–255.

  • 22

    Shabetai R, Fowler NO, Fenton JC, et al. Pulsus paradoxus. J Clin Invest. 1965; 44: 1882–1898.

  • 23

    Settle HP, Adolph RJ, Fowler NO, et al. Echocardiographic study of cardiac tamponade. Circulation 1977; 56: 951–959.

  • 24

    Bodson L, Bouferrache K, Vieillard-Baron A. Cardiac tamponade. Curr Opin Crit Care 2011; 17: 416–424.

  • 25

    Ruskin J, Bache RJ, Rembert JC, et al. Pressure-flow studies in man: effect of respiration on left ventricular stroke volume. Circulation 1973; 48: 79–85.

  • 26

    Kearns MJ, Walley KR. Tamponade. Hemodynamic and echocardiographic diagnosis. Chest 2018; 153: 1266–1275.

  • 27

    Zöllei É, Paprika D, Csillik A, et al. Valsalva maneuver, Müller maneuver: hemodynamic and reflex mechanisms, relevances. [Valsalva-manőver, Müller-manőver: keringési és reflexmechanizmusok, relevanciák.] Orv Hetil. 2007; 148: 343–350. [Hungarian]

  • 28

    Riegel F. About pulsus paradoxus. [Über Pulsus Paradoxus.] Deutsch Med Wochschr. 1903; 29: 345. [German]

  • 29

    Cohn JN, Pinkerson AL, Tristani FE. Mechanism of pulsus paradoxus in clinical shock. J Clin Invest. 1967; 46: 1744–1755.

  • 30

    Coyle JP, Teplick RS, Long MC, et al. Respiratory variations in systemic arterial pressure as an indicator of volume status. Anesthesiology 1983; 59: A53.

  • 31

    Perel A, Pizov R, Cotev S. Systolic blood pressure variation is a sensitive indicator of hypovolemia in ventilated dogs subjected to graded hemorrhage. Anesthesiology 1987; 67: 498–502.

  • 32

    Rooke GA, Schwid HA, Shapira Y. The effect of graded haemorrhage and intravascular volume replacement on systolic pressure variation in humans during mechanical and spontaneous ventilation. Anesth Analg. 1995; 80: 925–932.

  • 33

    Zöllei É, Bertalan V, Németh A, et al. Non-invasive detection of hypovolemia on fluid responsiveness in spontaneously breathing subjects. BMC Anesthesiol. 2013; 13: 40.

  • 34

    Cooke WH, Ryan KL, Convertino VA. Lower body negative pressure as a model to study progression to acute hemorrhagic shock in humans. J Appl Physiol. 2004; 96: 1249–1261.

  • 35

    Fischer MO, Dechanet F, du Cheyron D, et al. Evaluation of the knowledge base of French intensivists and anaesthesiologists as concerns the interpretation of respiratory arterial pulse pressure variation. Anaesth Crit Care Pain Med. 2015; 34: 29–34.

  • 36

    Salel A, Amsterdam EA, Zelis R. Pseudopulsus paradoxus. Chest 1973, 64: 671–672.

  • 37

    Rudas L, Hankovszky P, Lovas A, et al. Cyclic nonrespiratory pulse pressure oscillations caused by atrioventricular dissociation. Case Rep Crit Care 2017; 2017: 7647069.

  • 38

    Hartert TV, Wheeler AP, Sheller JR. Use of pulse oximetry to recognize severity of airflow obstruction in obstructive airway disease. Correlation with pulsus paradoxus. Chest 1999; 115: 475–481.

  • 39

    Tamburro RF, Ring JC, Womback K. Detection of pulsus paradoxus associated with large pericardial effusions in pediatric patients by analysis of the pulse-oximetry waveform. Pediatrics 2002; 109: 673–677.

  • 40

    Murray WB, Foster PA. The peripheral pulse wave: Information overlooked. J Clin Monit. 1996; 12: 365–377.