View More View Less
  • 1 Általános Orvostudományi Kar, I. Sz. Patológiai és Kísérleti Rákkutató Intézet, Semmelweis Egyetem, Budapest, Üllői út 26., 1085
Open access

Absztrakt:

A neurotrofikus tropomiozin receptor-tirozin-kináz (NTRK-) géncsalád tagjai (NTRK1, NTRK2, NTRK3) által kódolt tropomiozin receptor-tirozin-kináz fehérjék (TrkA, TrkB, TrkC) fiziológiásan elsősorban az idegsejtek fejlődéséért, éréséért, működéséért felelősek. Az NTRK-géncsaládot érintő genetikai eltérések, melyek a leggyakrabban kromoszomális transzlokáció következtében jönnek létre, számos rosszindulatú daganat kialakulásához vezethetnek. Egyes, kifejezetten ritka daganatokban nagyon nagy gyakorisággal fedezhető fel valamelyik NTRK-fúziós gén létrejötte, mint például az infantilis fibrosarcoma, a congenitalis mesoblastos nephroma vagy a secretoros carcinoma, míg egyes gyakori daganatokban – vastagbélrák, tüdőrák – bár kisebb frekvenciával, de szintén megjelenhet. Az utóbbi időben vizsgált, rendkívül magas válaszadási aránnyal alkalmazott ’target’ terápia miatt az NTRK-fúziós gének diagnosztikája még nagyobb jelentőségűvé vált. A cikk összegzi mindazokat a diagnosztikai eljárásokat s azok előnyeit, illetve hátrányait, melyeknek szerepük van az NTRK-géneltérések felderítésében, valamint ezek alapján további diagnosztikai megfontolásokat fogalmaz meg, melyek segíthetnek egy adott esetben a megfelelő diagnosztikai módszer megválasztásában. Orv Hetil. 2020; 161(41): 1753–1763.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1

    Chao MV. Neurotrophin receptors: a window into neuronal differentiation. Neuron 1992; 9: 583–593.

  • 2

    Reichardt LF. Neurotrophin-regulated signalling pathways. Philos Trans R Soc Lond B Biol Sci. 2006; 361: 1545–1564.

  • 3

    Huang EJ, Reichardt LF. Trk receptors: roles in neuronal signal transduction. Annu Rev Biochem. 2003; 72: 609–642.

  • 4

    Vaishnavi A, Le AT, Doebele RC. TRKing down an old oncogene in a new era of targeted therapy. Cancer Discov. 2015; 5: 25–34.

  • 5

    Nakagawara A. Trk receptor tyrosine kinases: a bridge between cancer and neural development. Cancer Lett. 2001; 169: 107–114.

  • 6

    Chao MV. Neurotrophins and their receptors: a convergence point for many signalling pathways. Nat Rev Neurosci. 2003; 4: 299–309.

  • 7

    Wong V, Pavlick D, Brennan T, et al. Evaluation of a congenital infantile fibrosarcoma by comprehensive genomic profiling reveals an LMNA-NTRK1 gene fusion responsive to crizotinib. J Natl Cancer Inst. 2015; 108: djv307.

  • 8

    Wiesner T, He J, Yelensky R, et al. Kinase fusions are frequent in Spitz tumors and spitzoid melanomas. Nat Commun. 2014; 5: 3116.

  • 9

    Sartore-Bianchi A, Ardini E, Bosotti R, et al. Sensitivity to entrectinib associated with novel LMNA-NTRK1 gene fusion in metastatic colorectal cancer. J Natl Cancer Inst. 2015; 108: djv306.

  • 10

    Kohsaka S, Saito T, Akaike K, et al. Pediatric soft tissue tumor of the upper arm with LMNA-NTRK1 fusion. Hum Pathol. 2018; 72: 167–173.

  • 11

    Haller F, Knopf J, Ackermann A, et al. Paediatric and adult soft tissue sarcomas with NTRK1 gene fusions: a subset of spindle cell sarcomas unified by a prominent myopericytic/haemangiopericytic pattern. J Pathol. 2016; 238: 700–710.

  • 12

    Agaram NP, Zhang L, Sung YS, et al. Recurrent NTRK1 gene fusions define a novel subset of locally aggressive lipofibromatosis-like neural tumors. Am J Surg Pathol. 2016; 40: 1407–1416.

  • 13

    Chiang S, Cotzia P, Hyman DM, et al. NTRK fusions define a novel uterine sarcoma subtype with features of fibrosarcoma. Am J Surg Pathol. 2018; 42: 791–798

  • 14

    Wu G, Diaz AK, Paugh BS, et al. The genomic landscape of diffuse intrinsic pontine glioma and pediatric non-brainstem high-grade glioma. Nat Genet. 2014; 46: 444–450.

  • 15

    Prasad ML, Vyas M, Horne MJ, et al. NTRK fusion oncogenes in pediatric papillary thyroid carcinoma in northeast United States. Cancer 2016; 122: 1097–1107.

  • 16

    Vaishnavi A, Capelletti M, Le AT, et al. Oncogenic and drug sensitive NTRK1 rearrangements in lung cancer. Nat Med. 2013; 19: 1469–1472.

  • 17

    Ferguson SD, Zhou S, Huse JT, et al. Targetable gene fusions associate with the IDH wild-type astrocytic lineage in adult gliomas. J Neuropathol Exp Neurol. 2018; 77: 437–442.

  • 18

    Knezevich SR, McFadden DE, Tao W, et al. A novel ETV6-NTRK3 gene fusion in congenital fibrosarcoma. Nat Genet. 1998; 18: 184–187.

  • 19

    Rubin BP, Chen CJ, Morgan TW, et al. Congenital mesoblastic nephroma t(12;15) is associated with ETV6-NTRK3 gene fusion: cytogenetic and molecular relationship to congenital (infantile) fibrosarcoma. Am J Pathol. 1998; 153: 1451–1458.

  • 20

    Tognon C, Knezevich SR, Huntsman D, et al. Expression of the ETV6-NTRK3 gene fusion as a primary event in human secretory breast carcinoma. Cancer Cell 2002; 2: 367–376.

  • 21

    Skálová A, Vanecek T, Sima R, et al. Mammary analogue secretory carcinoma of salivary glands, containing the ETV6-NTRK3 fusion gene: a hitherto undescribed salivary gland tumor entity. Am J Surg Pathol. 2010; 34: 599–608.

  • 22

    Church AJ, Calicchio ML, Nardi V, et al. Recurrent EML4–NTRK3 fusions in infantile fibrosarcoma and congenital mesoblastic nephroma suggest a revised testing strategy. Mod Pathol. 2018; 31: 463–473.

  • 23

    Tannenbaum-Dvir S, Glade Bender JL, Church AJ, et al. Characterization of a novel fusion gene EML4-NTRK3 in a case of recurrent congenital fibrosarcoma. Cold Spring Harb Mol Case Stud. 2015; 1: a000471.

  • 24

    Chwalenia K, Facemire L, Li H. Chimeric RNAs in cancer and normal physiology. Wiley Interdiscip Rev RNA 2017; 8: e1427.

  • 25

    Gao J, Aksoy BA, Dogrusoz U, et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal. 2013; 6: pl1.

  • 26

    Bollig-Fischer A, Michelhaugh SK, Wijesinghe P, et al. Cytogenomic profiling of breast cancer brain metastases reveals potential for repurposing targeted therapeutics. Oncotarget 2015; 6: 14614–14624.

  • 27

    Narayanan R, Yepuru M, Coss CC, et al. Discovery and preclinical characterization of novel small molecule TRK and ROS1 tyrosine kinase inhibitors for the treatment of cancer and inflammation. PLoS ONE 2013; 8: e83380.

  • 28

    Eggert A, Grotzer MA, Ikegaki N, et al. Expression of the neurotrophin receptor receptor TrkB is associated with unfavorable outcome in Wilms’ tumor. J Clin Oncol. 2001; 19: 689–696.

  • 29

    Brodeur GM, Minturn JE, Ho R, et al. Trk receptor expression and inhibiton in neuroblastomas. Clin Cancer Res. 2009; 15: 3244–3250.

  • 30

    Tomasson MH, Xiang Z, Walgren R, et al. Somatic mutations and germline sequence variants in the expressed tyrosine kinase genes of patients with de novo acute myeloid leukemia. Blood 2008; 111: 4797–4808.

  • 31

    Reuther GW, Lambert QT, Caligiuri MA, et al. Identification and characterization of an activating TrkA deletion mutation in acute myeloid leukemia. Mol Cell Biol. 2000; 20: 8655–8666.

  • 32

    Tacconelli A, Farina AR, Cappabianca L, et al. TrkA alternative splicing: a regulated tumor-promoting switch in human neuroblastoma. Cancer Cell 2004; 6: 347–360.

  • 33

    Marchetti A, Felicioni L, Pelosi G, et al. Frequent mutations in the neurotrophic tyrosine receptor kinase gene family in large cell neuroendocrine carcinoma of the lung. Hum Mutat. 2008; 29: 609–616.

  • 34

    Iniguez-Ariza NM, Bible KC, Morris JC, et al. NTRK1-3 point mutations in poor prognosis thyroid cancers. J Clin Oncol. 2017; 35(15_Suppl): 6087.

  • 35

    Doebele RC, Davis LE, Vaishnavi A, et al. An oncogenic NTRK fusion in a patient with soft-tissue sarcoma with response to the tropomyosin-related kinase inhibitor LOXO-101. Cancer Discov. 2015; 5: 1049–1057.

  • 36

    Pavlick D, Schrock AB, Malicki D, et al. Identification of NTRK fusions in pediatric mesenchymal tumors. Pediatr Blood Cancer 2017; 64: e26433.

  • 37

    Gatalica Z, Xiu J, Swensen J, et al. Molecular characterization of cancers with NTRK gene fusions. Mod Pathol. 2019; 32: 147–153.

  • 38

    Martin-Zanca D, Hugh SH, Barbacid M. A human oncogene formed by the fusion of truncated tropomyosin and protein tyrosine kinase sequences. Nature 1986; 319: 743–748.

  • 39

    Drilon A, Laetsch TW, Kummar S, et al. Efficacy of larotrectinib in TRK fusion-positive cancers in adults and children. N Engl J Med. 2018; 378: 731–739.

  • 40

    Khotskaya YB, Holla VR, Farago AF, et al. Targeting TRK family proteins in cancer. Pharmacol Ther. 2017; 173: 58–66.

  • 41

    Märkl B, Hirschbühl K, Dhillon C. NTRK-fusions – A new kid on the block. Pathol Res Pract. 2019; 215: 152572.

  • 42

    Doebele RC, Drilon A, Paz-Ares L, et al. Entrectinib in patients with advanced or metastatic NTRK fusion-positive solid tumours: integrated analysis of three phase 1–2 trials. Lancet Oncol. 2020; 21: 271–282. [Correction: Lancet Oncol. 2020; 21: e70.] [Correction: Lancet Oncol. 2020; 21: e341.] [Correction: Lancet Oncol. 2020; 21: e372].

  • 43

    Hechtman JF, Benayed R, Hyman DM, et al. Pan-Trk Immunohistochemistry is an efficient and reliable screen for the detection of NTRK fusions. Am J Surg Pathol. 2017; 41: 1547–1551.

  • 44

    Rudzinski ER, Lockwood CM, Stohr BA, et al. Pan-Trk immunohistochemistry identifies NTRK rearrangements in pediatric mesenchymal tumors. Am J Surg Pathol. 2018; 42: 927–935.

  • 45

    Murphy DA, Ely HA, Shoemaker R, et al. Detecting gene rearrangements in patient populations through a 2-step diagnostic test comprised of rapid IHC enrichment followed by sensitive next-generation sequencing. Appl Immunohistochem Mol Morphol. 2017; 25: 513–523.

  • 46

    Solomon JP, Hechtman JF. Detection of NTRK fusions: merits and limitations of current diagnostic platforms. Cancer Res. 2019; 79: 3163–3168.

  • 47

    Feng J, Ebata K, Hansen F, et al. TRK wild-type and fusion protein expression in solid tumors: Characterization by immunohistochemistry and in situ hybridization. Ann Oncol. 2018; 29: vi27.

  • 48

    Skálová A, Vanecek T, Simpson RH, et al. Mammary analogue secretory carcinoma of salivary glands: molecular analysis of 25 ETV6 gene rearranged tumors with lack of detection of classical ETV6-NTRK3 fusion transcript by standard RT-PCR: report of 4 cases harboring ETV6-X gene fusion. Am J Surg Pathol. 2016; 40: 3–13.

  • 49

    Hsiao SJ, Zehir A, Sireci AN, et al. Detection of tumor NTRK gene fusions to identify patients who may benefit from tyrosine kinase (TRK) inhibitor therapy. J Mol Diagn. 2019; 21: 553–571.

  • 50

    Penault-Llorca F, Rudzinski ER, Sepulveda AR. Testing algorithm for identification of patients with TRK fusion cancer. J Clin Pathol. 2019; 72: 460–467.