View More View Less
  • 1 Klinikum Passau, Passau, Németország
  • 2 Általános Orvostudományi Kar, Városmajori Szív- és Érgyógyászati Klinika, Semmelweis Egyetem, Budapest, Városmajor u. 68., 1122
  • 3 Általános Orvostudományi Kar, Aneszteziológiai és Intenzív Terápiás Klinika, Semmelweis Egyetem, Budapest

Összefoglaló. Az áramütés súlyos esetben hirtelen halállal vagy több szervrendszer kiterjedt károsodásával járhat. A magasfeszültségű áramütés (>1000 V) általában súlyosabb égési sérülésekkel és magasabb kórházi mortalitással jár, mint az alacsonyfeszültségű, de a sérülések súlyosságát a feszültségen kívül a test ellenállása, az áramexpozíció ideje, az áram fajtája, erőssége és útja is befolyásolja. A kritikus állapotú vagy súlyos égési sérüléseket szenvedett betegek sürgősségi ellátása komplex és multidiszciplináris szemléletet igényel. A súlyos szövődményekkel járó áramütéses balesetek ugyanakkor a fejlett országokban ritkák: az áramütés következtében sürgősségi osztályon jelentkező betegek döntő többsége panaszmentesen vagy minor panaszokkal kerül felvételre. A ritmuszavarok az áramütéses balesetek messze leggyakoribb cardialis szövődményei, és rendszerint közvetlenül az áramütés után jelentkeznek. Az elektromos áram kamrafibrillációt vagy asystoliát is kiválthat, mely a baleset helyszínén ellátás nélkül halálhoz vezethet. Bár sok helyen elterjedt gyakorlat az áramütést szenvedett betegek rutinszerű monitorozása, a klinikailag releváns arrhythmiák összességében ritkák, és a felvételi EKG alapján diagnosztizálhatók, ezért EKG-monitorozás csak meghatározott rizikófaktorok esetén szükséges. Jelen munkánk célja összefoglalni az áramütést szenvedett betegek optimális sürgősségi ellátásával kapcsolatos legfontosabb szempontokat, különös tekintettel az áramütéses balesetet követően fellépő cardialis szövődményekre és arrhythmiákra, valamint az EKG-monitorozás indikációira. Orv Hetil. 2020; 161(47): 1979–1988.

Summary. Electrical accidents (EA) may cause sudden death or severe injuries of multiple organs. High voltage injuries (>1000 V) are associated with more severe burn injuries and higher in-hospital mortality than low voltage injuries, however, the severity of complications depends on several other factors like resistance of the body, duration of current exposition, intensity, type and pathway of current. Critically ill patients with severe burns and/or other injuries require a multidisciplinary intensive treatment. However, such complications are rare in the developed countries: most patients present in the emergency department with no or minor symptoms and do not require hospital admission. Arrhythmias are the most frequent cardiac complications after EA. Electrical current may cause ventricular fibrillation or asystolia which can lead to death on the scene. In patients presenting in the emergency department, clinically relevant arrhythmias are rare and can be diagnosed by a 12-lead ECG, therefore a systematic monitoring may not be indicated. Aim of our work is to review the most frequent complications after an electrical accident with special focus on cardiac complications and arrhythmias. The other aim of the manuscript is to summarize the most important aspects of emergency treatment and indication for ECG monitoring after electrical accident. Orv Hetil. 2020; 161(47): 1979–1988.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1

    Dokov W, Dokova K. Epidemiology and diagnostic problems of electrical injury in forensic medicine. In: Vieira DN. (ed.) Forensic medicine – From old problems to new challenges. Intech, London, 2011; pp. 121–136.

  • 2

    Böhrer M, Stewart SA, Hurley KF. Epidemiology of electrical and lightning-related injuries among Canadian children and youth, 1997–2010: A Canadian Hospitals Injury Reporting and Prevention Program (CHIRPP) Study. CJEM 2018; 20: 586–591.

  • 3

    Cawley JC, Homce GT. Trends in electrical injury in the U.S., 1992–2002. IEEE Trans Ind Appl. 2008; 44: 962–972.

  • 4

    Koumbourlis AC. Electrical injuries. Crit Care Med. 2002; 30(11 Suppl): S424–S430.

  • 5

    Spies C, Trohman RG. Narrative review: electrocution and life-threatening electrical injuries. Ann Intern Med. 2006; 145: 531–537.

  • 6

    Waldmann V, Narayanan K, Combes N, et al. Electrical cardiac injuries: current concepts and management. Eur Heart J. 2018; 39: 1459–1465.

  • 7

    Bailey B, Forget S, Gaudreault P. Prevalence of potential risk factors in victims of electrocution. Forensic Sci Int. 2001; 123: 58–62.

  • 8

    Arnoldo BD, Purdue GF, Kowalske K, et al. Electrical injuries: a 20-year review. J Burn Care Rehabil. 2004; 25: 479–484.

  • 9

    The National Institute for Occupational Safety and Health. Worker deaths by electrocution. DHHS (NIOSH) Publication No. 98–131. Available from: https://www.cdc.gov/niosh/docs/98-131/pdfs/98-131.pdf [accessed: March 11, 2020].

  • 10

    Gille J, Schmidt T, Dragu A, et al. Electrical injury – a dual center analysis of patient characteristics, therapeutic specifics and outcome predictors. Scand J Trauma Resusc Emerg Med. 2018; 26: 43.

  • 11

    Kym D, Seo DK, Hur GY, et al. Epidemiology of electrical injury: Differences between low- and high-voltage electrical injuries during a 7-year study period in South Korea. Scand J Surg. 2015; 104: 108–114.

  • 12

    Toy J, Ball BJ, Tredget EE. Carotid rupture following electrical injury: a report of two cases. J Burn Care Res. 2012; 33: e160–e165.

  • 13

    Kidd M, Hultman CS, Van Aalst J, et al. The contemporary management of electrical injuries: resuscitation, reconstruction, rehabilitation. Ann Plast Surg. 2007; 58: 273–278.

  • 14

    Bosch X, Poch E, Grau JM. Rhabdomyolysis and acute kidney injury. N Engl J Med. 2009; 361: 62–72.

  • 15

    Yen YL, Lin HL, Lin HJ, et al. Photokeratoconjunctivitis caused by different light sources. Am J Emerg Med. 2004; 22: 511–515.

  • 16

    Karamanli H, Akgedik R. Lung damage due to low-voltage electrical injury. Acta Clin Belg. 2017; 72: 349–351.

  • 17

    Truong T, Le TV, Smith DL, et al. Low-voltage electricity-induced lung injury. Respirol Case Rep. 2017; 6: e00292.

  • 18

    Marques EG, Junior GAP, Neto BFM, et al. Visceral injury in electrical shock trauma: proposed guideline for the management of abdominal electrocution and literature review. Int J Burns Trauma 2014; 4: 1–6.

  • 19

    Fineschi V, Karch SB, D’Errico S, et al. Cardiac pathology in death from electrocution. Int J Legal Med. 2006; 120: 79–82.

  • 20

    Celebi A, Gulel O, Cicekcioglu H, et al. Myocardial infarction after an electric shock: a rare complication. Cardiol J. 2009; 16: 362–364.

  • 21

    Franzius C, Meyer-Hofmann H, Lison AE. Myocardial infarct and rhabdomyolysis after a high-voltage accident with successful resuscitation. [Myokardinfarkt und Rhabhomyolyse nach einem Hochspannungsunfall mit erfolgreicher Reanimation.] Dtsch Med Wochenschr. 1997; 122: 400–406. [German]

  • 22

    Jaber JJ, Vibhakar DB. High voltage induced myocardial dysfunction with associated acute four-chamber dilated cardiomyopathy: a case report and review of the literature. Burns 2012; 38: e28–e34.

  • 23

    Buono LM, DePace NL, Elbaum DM. Dilated cardiomyopathy after electrical injury: report of two cases. J Am Osteopath Assoc. 2003; 103: 247–249.

  • 24

    Hayashi M, Yamada H, Agatsuma T, et al. A case of Takotsubo-shaped hypokinesis of the left ventricle caused by a lightning strike. Int Heart J. 2005; 46: 933–938.

  • 25

    Wetli CV. Keraunopathology. An analysis of 45 fatalities. Am J Forensic Med Pathol. 1996; 17: 89–98.

  • 26

    Geddes LA, Bourland JD, Ford G. The mechanism underlying sudden death from electric shock. Med Instrum. 1986; 20: 303–315.

  • 27

    Kay GN, Dosdall DJ, Shepard RB. Cardiac electrical stimulation. In: Ellenbogen KA, Kay GN, Lau CP, et al. (eds.) Clinical cardiac pacing, defibrillation and resynchronization therapy. Saunders, Philadelphia, PA, 2011; pp. 3–39.

  • 28

    Searle J, Slagman A, Maaβ W, et al. Cardiac monitoring in patients with electrical injuries. An analysis of 268 patients at the Charité Hospital. Dtsch Arztebl Int. 2013; 110: 847–853.

  • 29

    Krämer C, Pfister R, Boekels T, et al. Cardiac monitoring always required after electrical injuries? Med Klin Intensivmed Notfmed. 2016; 111: 708–714.

  • 30

    Pawlik AM, Lampart A, Stephan FP, et al. Outcomes of electrical injuries in the emergency department: a 10-year retrospective study. Eur J Emerg Med. 2016; 23: 448–454.

  • 31

    Sigmund M, Völker H, Effert S, et al. Heart damage after electric injury. [Herzschädigung nach Stromunfall.] Versicherungsmedizin 1991; 43: 148–151. [German]

  • 32

    Pilecky D, Vamos M, Bogyi P, et al. Risk of cardiac arrhythmias after electrical accident: a single-center study of 480 patients. Clin Res Cardiol. 2019; 108: 901–908.

  • 33

    Orme S, Channer KS. Tachycardia following low-tension electrocution. Postgrad Med J. 1999; 75: 439–440.

  • 34

    Beton O, Efe TH, Kaya H, et al. Electrical injury-induced complete atrioventricular block: is permanent pacemaker required? Case Rep Cardiol. 2015; 2015: 158948.

  • 35

    Tomcsányi J, Bózsik B, Hrisula A. Electric shock and Brugada syndrome. Am J Emerg Med. 2010; 28: 540.e7–e8.

  • 36

    Karataş MB, Onuk T, Güngör B, et al. Assessment of electrocardiographic parameters in patients with electrocution injury. J Electrocardiol. 2015; 48: 809–814.

  • 37

    Jensen PJ, Thomsen PE, Bagger JP, et al. Electrical injury causing ventricular arrhythmias. Br Heart J. 1987: 57: 279–283.

  • 38

    Sharma BC, Patial RK, Pal LS, et al. Electrocardiographic manifestations following household electric current injury. J Assoc Physicians India 1990; 38: 938–939.

  • 39

    Bailey B, Gaudreault P, Thivierge RL. Cardiac monitoring of high-risk patients after an electrical injury: a prospective multicentre study. Emerg Med J. 2007; 24: 348–352.

  • 40

    Hansen SM, Riahi S, Hjortshøj S, et al. Mortality and risk of cardiac complications among immediate survivors of accidental electric shock: a Danish nationwide cohort study. BMJ Open 2017; 7: e015967.

  • 41

    Truhlař A, Deakin CD, Soar J, et al. European Resuscitation Council Guidelines for Resuscitation 2015: Section 4. Cardiac arrest in special circumstances. Resuscitation 2015; 95: 148–201.

  • 42

    Stieger P, Rana OR, Saygili E, et al. Impact of internal and external electrical cardioversion on cardiac specific enzymes and inflammation in patients with atrial fibrillation and heart failure. J Cardiol. 2018; 72: 135–139.

  • 43

    Tahin T, Herczeg S, Gellér L, et al. Assessment of the extent of myocardial necrosis following radiofrequency catheter ablation of different supraventricular arrhythmias. [A myocardialis necrosis mértékének vizsgálata eltérő supraventricularis szívritmuszavarok rádiófrekvenciás katéterablatiós kezelését követően.] Orv Hetil. 2019; 160: 540–548. [Hungarian]

  • 44

    Sparić R, Malvasi A, Nejković L, et al. Electric shock in pregnancy: a review. J Matern Neonatal Med. 2016; 29: 317–323.

  • 45

    Fish RM. Electric injury, part III: cardiac monitoring indications, the pregnant patient, and lightning. J Emerg Med. 2000; 18: 181–187.

  • 46

    Ginwalla M, Battula S, Dunn J, et al. Termination of electrocution-induced ventricular fibrillation by an implantable cardioverter defibrillator. Pacing Clin Electrophysiol. 2010; 33: 510–512.

  • 47

    Claudet I, Maréchal C, Debuisson C, et al. Risk of arrhythmia and domestic low-voltage electrical injury. [Risque de trouble du rythme et électrisation par courant domestique.] Arch Pediatr. 2010; 17: 343–349. [French]

  • 48

    Ströhle M, Wallner B, Lanthaler M, et al. Lightning accidents in the Austrian Alps – a 10-year retrospective nationwide analysis. Scand J Trauma Resusc Emerg Med. 2018; 26: 74.

  • 49

    Christophides T, Khan S, Ahmad M, et al. Cardiac effects of lightning strikes. Arrhythm Electrophysiol Rev. 2017; 6: 114–117.