View More View Less
  • 1 Általános Orvostudományi Kar, Klinikai Központ, Gyermekgyógyászati Klinika, Debreceni Egyetem, Debrecen, Nagyerdei krt. 98., 4032
  • 2 Általános Orvostudományi Kar, Laboratóriumi Medicina Intézet, Semmelweis Egyetem, Budapest
Open access

Összefoglaló. Az élelmiszer-eredetű megbetegedések igen gyakoriak, bár pontos adatok nem állnak rendelkezésre, mivel az enyhe, gyorsan múló gastrointestinalis tünetekkel a betegek nem fordulnak orvoshoz, vagy nem történik diagnosztikus vizsgálat. Az amerikai Járványügyi és Betegségmegelőzési Központ (CDC) adatai szerint az USA-ban évente 6 lakosból 1 esik át élelmiszer okozta tüneteken. Az ételintoxikációk során a baktérium által termelt toxinok okozzák a tüneteket, közülük a leggyakoribb a Clostridium perfringens, a Staphylococcus aureus és a Bacillus cereus okozta, élelmiszer-eredetű intoxikáció. A nem megfelelően tárolt vagy hőkezelt élelmiszerekben – beleértve a S. aureus által szennyezett anyatejet – ezen baktériumok életképesek maradnak, elszaporodnak, és toxint termelhetnek, illetve toxinjaik megőrzik megbetegítőképességüket. Az étel elfogyasztása után 3–12 órával hányást, hasmenést okoznak. A tünetek többnyire 24 órán belül megszűnnek. A Clostridium botulinum súlyos neurológiai tünetei miatt emelkedik ki a többi toxikoinfekció sorából. C. botulinum okozta tünetekre felnőtteknél házi készítésű konzervek és húskészítmények elfogyasztása után jelentkező gastrointestinalis vagy neurológiai tünetek esetén kell gondolnunk. A Clostridioides difficile szintén a toxinjai révén okoz súlyos, életveszélyes megbetegedést, továbbá az esetek 20–30%-ában számolnunk kell az infekció relapsusával. Növekvő gyakorisága miatt ismernünk érdemes a laboratóriumi és klinikai diagnosztika részleteit és a legmodernebb kezelési lehetőségeket, úgymint megfelelő mintavétel, mintatárolás és -szállítás, tenyésztés, toxinkimutatás, helyes tüneti kezelés, antibiotikumkombinációk, széklettranszplantáció és monoklonálisantitest-kezelés. Orv Hetil. 2020; 161(48): 2019–2028.

Summary. Foodborne diseases are quite common, however, accurate data are not available because patients do not visit doctors with mild, rapidly resolving symptoms and diagnostic tests are not performed. The Centers of Disease Control and Prevention (CDC) estimates that, in the USA, 1 in 6 citizens gets food poisoning yearly. Symptoms of intoxication are due to the toxins produced by bacteria, mostly by Clostridium perfringens, Staphylococcus aureus and Bacillus cereus. These bacteria can survive in not properly stored or heated food, including S. aureus contaminated breastmilk. They can multiply and produce toxins causing intoxications. The gastrointestinal symptoms start 3–12 hours after consumption of the contaminated food and resolve in 24 hours. Clostridium botulinum causes severe neurological symptoms that should be suspected after consumption of home-made cans, smoked hams and sausages. The disease caused by Clostridioides difficile is not a foodborne one, but C. difficile causes severe infection via its toxins. Another problem is that C. difficile infection recurs in 20–30% of cases. Due to the increasing incidence of foodborne diseases, it is worth to learn the precise clinical and laboratory diagnostic algorithms including sampling, storage and transportation of samples, cultivation of bacteria and differential diagnosis of these diseases, furthermore the most up-to-date symptomatic and causative treatment options like antibiotic combinations, stool transplantation and monoclonal antibodies. Orv Hetil. 2020; 161(48): 2019–2028.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1

    Marder EP, Cieslak PR, Cronquist AB, et al. Incidence and trends of infections with pathogens transmitted commonly through food and the effect of increasing use of culture-independent diagnostic tests on surveillance – Foodborne Diseases Active Surveillance Network, 10 U.S. Sites, 2013–2016. MMWR Morb Mortal Wkly Rep. 2017; 66: 397–403. [Erratum: MMWR Morb Mortal Wkly Rep. 2017; 66: 653.]

  • 2

    Scallan E, Hoekstra RM, Angulo FJ, et al. Foodborne illness acquired in the United States – major pathogens. Emerg Infect Dis. 2011; 17: 7–15.

  • 3

    National Food Chain Safety Office. Trends of the foodborne illnesses. [Nemzeti Élelmiszerlánc-biztonsági Hivatal. Élelmiszerek által közvetített megbetegedések alakulása.] Available from: https://portal.nebih.gov.hu/-/elelmiszerek-altal-kozvetitett-megbetegedesek-alakulasa [accessed: July 10, 2020]. [Hungarian]

  • 4

    Painter JA, Hoekstra RM, Ayers T, et al. Attribution of foodborne illnesses, hospitalizations, and deaths to food commodities by using outbreak data, United States, 1998–2008. Emerg Infect Dis. 2013; 19: 407–415.

  • 5

    Rozgonyi F. Bacterial infection of the gastrointestinal tract. In: Rozgonyi F. (ed.) Microbiological rapid diagnostics for clinical, outpatient and general practioner. I. Diagnosis of bacterial infections. [Az emésztő rendszer bacterialis fertőzései. In: Rozgonyi F. (szerk.) Klinikai, járóbeteg-szakorvosi és háziorvosi microbiologiai gyorsdiagnostica. I. Bacterialis fertőzések diagnosticája.] HOM-IR Kft., Budapest, 2006; pp. 105–141. [Hungarian]

  • 6

    Kotiranta A, Lounatmaa K, Haapasalo M. Epidemiology and pathogenesis of Bacillus cereus infections. Microbes Infect. 2000; 2: 189–198.

  • 7

    Stenfors Arnesen LP, Fagerlund A, Granum PE. From soil to gut: Bacillus cereus and its food poisoning toxins. FEMS Microbiol Rev. 2008; 32: 579–606.

  • 8

    Bottone EJ. Bacillus cereus, a volatile human pathogen. Clin Microbiol Rev. 2010; 23: 382–398.

  • 9

    Visiello R, Colombo S, Carretto E. Bacillus cereus hemolysins and other virulence factors. In: Savini V. (ed.) The diverse faces of Bacillus cereus. Academic Press, Elsevier, London, 2016; pp. 35–44.

  • 10

    Ramarao N, Sanchis V. The pore-forming haemolysins of Bacillus cereus: a review. Toxins (Basel) 2013; 5: 1119–1139.

  • 11

    Brouland JP, Sala N, Tusgul S, et al. Bacillus cereus bacteremia with central nervous system involvement: a neuropathological study. Clin Neuropathol. 2018; 37: 22–27.

  • 12

    Tusgul S, Prod’hom G, Senn L, et al. Bacillus cereus bacteraemia: comparison between haematologic and nonhaematologic patients. New Microbes New Infect. 2017; 15: 65–71.

  • 13

    Horii T, Tamai K, Notake S, et al. Bacillus cereus bloodstream infection in a preterm neonate complicated by late meningitis. Case Rep Infect Dis. 2012; 2012: 358789.

  • 14

    Ramarao N, Tran SL, Marin M, et al. Advanced methods for detection of Bacillus cereus and its pathogenic factors. Sensors (Basel) 2020; 20: 2667.

  • 15

    Uchino Y, Iriyama N, Matsumoto K, et al. A case series of Bacillus cereus septicemia in patients with hematological disease. Intern Med. 2012; 51: 2733–2738.

  • 16

    The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2017. European Food Safety Authority and European Centre for Disease Prevention and Control (EFSA and ECDC) EFSA J. 2018; 16: e05500.

  • 17

    Hu DL, Nakane A. Mechanisms of staphylococcal enterotoxin-induced emesis. Eur J Pharmacol. 2014; 722: 95–107.

  • 18

    Krakauer T, Stiles BG. The staphylococcal enterotoxin (SE) family: SEB and siblings. Virulence 2013; 4: 759–773.

  • 19

    Zeaki N, Johler S, Skandamis PN, et al. The role of regulatory mechanisms and environmental parameters in staphylococcal food poisoning and resulting challenges to risk assessment. Front Microbiol. 2019; 10: 1307.

  • 20

    Kadariya J, Smith TC, Thapaliya D. Staphylococcus aureus and staphylococcal food-borne disease: an ongoing challenge in public health. Biomed Res Int. 2014; 2014: 827965.

  • 21

    Maródi CsL, Rozgonyi F. Molecular microbiology and clinical features of Staphylococcus aureus enterotoxins. [Staphylococcus aureus enterotoxinjainak molekuláris mikrobiológiája és klinikai jellemzői.] Orv Hetil. 2004; 145: 2219–2226. [Hungarian]

  • 22

    Papageorgiou AC, Tranter HS, Acharya KR. Crystal structure of microbial superantigen staphylococcal enterotoxin B at 1.5 Å resolution: implications for superantigen recognition by MHC class II molecules and T-cell receptors. J Mol Biol. 1998; 277: 61–79.

  • 23

    Balaban N, Rasooly A. Staphylococcal enterotoxins. Int J Food Microbiol. 2000; 61: 1–10.

  • 24

    Podkowik M, Park JY, Seo KS, et al. Enterotoxigenic potential of coagulase-negative staphylococci. Int J Food Microbiol. 2013; 163: 34–40.

  • 25

    Veras JF, do Carmo LS, Tong LC, et al. A study of the enterotoxigenicity of coagulase-negative and coagulase-positive staphylococcal isolates from food poisoning outbreaks in Minas Gerais, Brazil. Int J Infect Dis. 2008; 12: 410–415.

  • 26

    da Silva AC, Rodrigues MX, Silva NC. Methicillin-resistant Staphylococcus aureus in food and the prevalence in Brazil: a review. Braz J Microbiol. 2020; 51: 347–356.

  • 27

    Shrestha A, Uzal FA, McClane BA. Enterotoxic clostridia: Clostridium perfringens enteric diseases. Microbiol Spectr. 2018; 6: 10.1128/microbiolspec.GPP3-0003-2017.

  • 28

    Grass JE, Gould LH, Mahon BE. Epidemiology of foodborne disease outbreaks caused by Clostridium perfringens, United States, 1998–2010. Foodborne Pathog Dis. 2013; 10: 131–136.

  • 29

    Shen A, Edwards AN, Sarker MR, et al. Sporulation and germination in clostridial pathogens. Microbiol Spectr. 2019; 7: 10.1128/microbiolspec.GPP3-0017-2018.

  • 30

    Petrillo TM, Beck-Sagué CM, Songer JG, et al. Enteritis necroticans (pigbel) in a diabetic child. N Engl J Med. 2000; 342: 1250–1253.

  • 31

    Zhao X, Lin CW, Wang J, et al. Advances in rapid detection methods for foodborne pathogens. J Microbiol Biotechnol. 2014; 24: 297–312.

  • 32

    Umesha S, Manukumar HM. Advanced molecular diagnostic techniques for detection of food-borne pathogens: current applications and future challenges. Crit Rev Food Sci Nutr. 2018; 58: 84–104.

  • 33

    Gonzales y Tucker RD, Frazee B. View from the front lines: an emergency medicine perspective on clostridial infections in injection drug users. Anaerobe 2014; 30: 108–115.

  • 34

    Barash JR, Arnon SS. A novel strain of Clostridium botulinum that produces type B and type H botulinum toxins. J Infect Dis. 2014; 209: 183–191.

  • 35

    Kumar R, Dhaliwal HP, Kukreja RV, et al. The botulinum toxin as a therapeutic agent: molecular structure and mechanism of action in motor and sensory systems. Semin Neurol. 2016; 36: 10–19.

  • 36

    Schwartz KL, Austin JW, Science M. Constipation and poor feeding in an infant with botulism. CMAJ 2012; 184: 1919–1922.

  • 37

    Nagy E. Anaerob bacteria. In: Pál T. (ed.) Textbook of medical microbiology. [Anaerob baktériumok. In: Pál T. (szerk.) Az orvosi mikrobiológia tankönyve.] Medicina Könyvkiadó, Budapest, 2013; pp. 350–366. [Hungarian]

  • 38

    DiPrisco BE, Chhabria S, Forem SL, et al. Ten-week-old girl with lethargy, weakness, and poor feeding. Clin Pediatr (Phila). 2013; 52: 190–193.

  • 39

    Pifko E, Price A, Sterner S. Infant botulism and indications for administration of botulism immune globulin. Pediatr Emerg Care 2014; 30: 120–124; quiz 125–127.

  • 40

    Griese SE, Kisselburgh HM, Bartenfeld MT, et al. Pediatric botulism and use of equine botulinum antitoxin in children: a systematic review. Clin Infect Dis. 2017; 66(Suppl 1): S17–S29.

  • 41

    Sobel J. Botulism. Clin Infect Dis. 2005; 41: 1167–1173.

  • 42

    Lindström M, Korkeala H. Laboratory diagnostics of botulism. Clin Microbiol Rev. 2006; 19: 298–314.

  • 43

    Grosse-Herrenthey A, Maier T, Gessler F, et al. Challenging the problem of clostridial identification with matrix-assisted laser desorption and ionization–time-of-flight mass spectrometry (MALDI–TOF MS). Anaerobe 2008; 14: 242–249.

  • 44

    Schaumann R, Dallacker-Losensky K, Rosenkranz C, et al. Discrimination of human pathogen Clostridium species especially of the heterogeneous C. sporogenes and C. botulinum by MALDI–TOF mass spectrometry. Curr Microbiol. 2018; 75: 1506–1515.

  • 45

    Schreiner MS, Field E, Ruddy R. Infant botulism: a review of 12 years’ experience at the Children’s Hospital of Philadelphia. Pediatrics 1991; 87: 159–165.

  • 46

    Lessa FC, Mu Y, Bamberg WM, et al. Burden of Clostridium difficile infection in the United States. N Engl J Med. 2015; 372: 825–834.

  • 47

    Ofori E, Ramai D, Dhawan M, et al. Community-acquired Clostridium difficile: epidemiology, ribotype, risk factors, hospital and intensive care unit outcomes, and current and emerging therapies. J Hosp Infect. 2018; 99: 436–442.

  • 48

    Carroll KC, Bartlett JG. Biology of Clostridium difficile: implications for epidemiology and diagnosis. Annu Rev Microbiol. 2011; 65: 501–521.

  • 49

    McDonald LC, Coignard B, Dubberke E, et al. Recommendations for surveillance of Clostridium difficile-associated disease. Infect Control Hosp Epidemiol. 2007; 28: 140–145.

  • 50

    Igaz I, Simonyi G, Balogh S, et al. Adverse effects of long-term proton-pump inhibitor therapy on adults. [A hosszú távú protonpumpagátló kezelés következményei felnőtteken.] Orv Hetil. 2018; 159: 735–740. [Hungarian]

  • 51

    Brown KA, Khanafer N, Daneman N, et al. Meta-analysis of antibiotics and the risk of community-associated Clostridium difficile infection. Antimicrob Agents Chemother. 2013; 57: 2326–2332.

  • 52

    McGovern AM, Androga GO, Knight DR, et al. Prevalence of binary toxin positive Clostridium difficile in diarrhoeal humans in the absence of epidemic ribotype 027. PLoS ONE 2017; 12: e0187658.

  • 53

    Mileto S, Das A, Lyras D. Enterotoxic clostridia: Clostridioides difficile infections. Microbiol Spectr. 2019; 7: GPP3-0015-2018.

  • 54

    Sloan LM, Duresko BJ, Gustafson DR, et al. Comparison of real-time PCR for detection of the tcdC gene with four toxin immunoassays and culture in diagnosis of Clostridium difficile infection. J Clin Microbiol. 2008; 46: 1996–2001.

  • 55

    Diagnostic, therapy and prevention of Clostridium difficile. [A Clostridium difficile fertőzések diagnosztikájáról, terápiájáról és megelőzéséről.] Az Országos Epidemiológiai Központ Módszertani levele, Budapest, 2016. [Hungarian]

  • 56

    Chan KS, Lee WY, Yu WL. Coexisting cytomegalovirus infection in immunocompetent patients with Clostridium difficile colitis. J Microbiol Immunol Infect. 2016; 49: 829–836.

  • 57

    McDonald LC, Gerding DN, Johnson S, et al. Clinical practice guidelines for Clostridium difficile infection in adults and children: 2017 update by the Infectious Diseases Society of America (IDSA) and Society for Healthcare Epidemiology of America (SHEA). Clin Infect Dis. 2018; 66: 987–994.

  • 58

    Brodszky V, Gulácsi L, Ludwig E, et al. Antimicrobial therapy of Clostridium difficile infection. Systematic review and meta-analysis of the scientific evidence. [A Clostridium difficile-fertőzések antibiotikum-terápiája. A tudományos bizonyítékok szisztematikus áttekintése és metaanalízise.] Orv Hetil. 2013; 154: 890–899. [Hungarian]

  • 59

    Vigvári Sz, Nemes Z, Vincze A, et al. Experience with fecal microbiota transplantation in the treatment of Clostridium difficile infection. [Clostridium difficile-fertőzések széklettranszplantációval való kezelése során nyert tapasztalataink.] Orv Hetil. 2014; 155: 1758–1762. [Hungarian]

  • 60

    Johnson S, Gerding DN. Bezlotoxumab. Clin Infect Dis. 2019; 68: 699–704.

  • 61

    Lehotsky Á, Falus A, Lukács Á, et al. Direct effect of contemporary health education programmes on the knowledge about hand hygiene and technique of hand washing in primary school age children. [Kortárs egészségfejlesztési programok közvetlen hatása alsó tagozatos gyermekek kézhigiénés tudására és megfelelő kézmosási technikájára.] Orv Hetil. 2018; 159: 485–490. [Hungarian]