Zhu YP. Chinese materia medica. Chemistry, pharmacology and applications. CRC Press, Boca Raton FL, London, New York NY, Washigton DC, 1998.
Harada M, Ozaki Y. Pharmacological studies on Chinese cinnamon. I. Central effect of cinnamaldehyde. Yakugaku Zasshi 1972; 92: 135–140.
Lungarini S, Aureli F, Coni E. Coumarin and cinnamaldehyde in cinnamon marketed in Italy: a natural chemical hazard? Food Addit Contam. Part A. Chem Anal Control Expo Risk Assess 2008; 25: 1297–1305.
Tang W, Eisenbrand G. Handbook of Chinese medicinal plants, chemistry, pharmacology, toxicology. Wiley-VCH, Weinheim, 2011.
Yuan AX, Qin L, Jiang DG. Studies on the chemical constituents of Cinnamomum cassia. Chin Pharm Bull. 1981; 16: 631.
Wang YS. Pharmacology and applications of chinese materia medica. People’s Health Publisher, Beijing, 1983; pp. 442–446.
Yuan AX, Tan L, Jiang DG. Studies on chemical constituents of Rou Gui (Cinnamomum cassia Presl). Bull Chin Mater Med. 1982; 7: 26–28.
Tanaka S, Yoon YH, Fukui H, et al. Antiulcerogenic compounds isolated from Chinese cinnamon. Planta Med. 1989; 55: 245–248.
Ghosh P, Markin RS, Sorrell MF. Coumarin-induced hepatic necrosis. Am J Gastroenterol. 1997; 92: 348–349.
Kreydiyyeh SI, Usta J, Copti R. Effect of cinnamom, clove and some of their constituents on the Na+-K+-ATPase activity and alanine absorption in the rat jejunum. Food Chem Toxicol. 2000; 38: 755–762.
Cheng JT, Liu IM, Huang WC, et al. Stimulatory effect of trans-cinnamaldehyde on noradrenaline secretion in guinea-pig ileum myenteric nerve terminals. Life Sci. 2000; 66: 981–990.
Lee HS, Kim BS, Kim MK. Suppression effect of Cinnamomun cassia bark-derived component on nitric oxide synthase. J Agric Food Chem. 2002; 50: 7700–7703.
Lee HS, Lee SY, Son DJ, et al. Inhibitory effect of 2’-hydroxycinnamaldehyde on nitric oxide production through inhibition of NF-κB activation in RAW 264.7 cells. Biochem Pharmacol. 2005; 69: 791–799.
Sasaki YF, Ohta T, Imanishi H, et al. Suppressing effects of vanillin, cinnamaldehyde and anisaldehyde on chromosome abberations induced by X-rays in mice. Mutat Res. 1990; 243: 299–302.
Sasaki YF, Imanishi H, Watanabe M, et al. Suppressing effect of antimutagenic flavorings on chromosome aberrations induced by UV-light or X-rays in cultured Chinese hamster cells. Mutat Res. 1990; 229: 1–10.
Sharma N, Trikha P, Athar M, et al. Inhibition of benzo[a]pyrene- and cyclophosphamide-induced mutagenicity by Cinnamomun cassia. Mutat Res. 2001; 480-481: 189–188.
Liu L, Hudgins WR, Shack S, et al. Cinnamic acid: a natural product with potential use in cancer intervention. Int J Cancer 1995; 62: 345–350.
Stammati A, Bonsi P, Zucco F, et al. Toxicity of selected plant volatiles in microbial and mammalian short-term assays. Food Chem Toxicol. 1999; 37: 813–823.
Ekmekcioglu C, Feyertag J, Marktl W. Cinnamic acid inhibits proliferation and modulates brush border membrane enzyme activities in Caco-2 cells. Cancer Lett. 1998; 128: 137–144.
Gujral UP, Pradeepa R, Weber MB, et al. Type 2 diabetes in South Asians: Similarities and differences with white Caucasian and other populations. Ann NY Acad Sci. 2013; 1281: 51–63.
Anand SS, Meyre D, Pare G, et al. Genetic information and the prediction of incident type 2 diabetes in a high-risk multiethnic population: the EpiDREAM genetic study. Diabetes Care 2013; 36: 2836–2842.
Shah A, Kanaya AM. Diabetes and associated complications in the South Asian population. Curr Cardiol Rep. 2014; 16: 476.
Crawford P. Effectiveness of cinnamon for lowering hemoglobin A1c in patients with type 2 diabetes: a randomized, controlled trial. J Am Board Fam Med. 2009; 22: 507–512.
Blevins SM, Leyva MJ, Brown J, et al. Effect of cinnamon on glucose and lipid levels in non-insulin-dependent type 2 diabetes. Diabetes Care 2007; 30: 2236–2237.
Ranasinghe P, Jayawardana R, Galappaththy P, et. al. Efficacy and safety of “true” cinnamon (Cinnamomum zeylanicum) as a pharmaceutical agent in diabetes: a systematic review and meta-analysis. Diabet Med. 2012; 29: 1480–1492.
Cao H, Polansky MM, Anderson RA. Cinnamon extract and polyphenols affect the expression of tristetraprolin, insulin receptor, and glucose transporter 4 in mouse 3T3-L1 adipocytes. Arch Biochem Biophys. 2007; 459: 214–222.
Imparl-Radosevich J, Deas S, Polansky MM, et al. Regulation of PTP-1 and insulin receptor kinase by fractions from cinnamon: implications for cinnamon regulation of insulin signalling. Horm Res. 1998; 50: 177–182.
Jarvill-Taylor KJ, Anderson RA, Graves DJ. A hydroxychalcone derived from cinnamon functions as a mimetic for insulin in 3T3–L1 adipocytes. J Am Coll Nutr. 2001; 20: 327–336.
Qin B, Nagasaki M, Ren M, et al. Cinnamon extract (traditional herb) potentiates in vivo insulin-regulated glucose utilization via enhancing insulin signaling in rats. Diabetes Res Clin Pract. 2003; 62: 139–148.
Sierra-Puente D, Abadi-Alfie S, Arakanchi-Altaled K, et al. Cinammon (Cinnamomum spp.) and type 2 diabetes mellitus. Curr Top Nutraceut Res. 2020; 18: 247–255.
Ranasinghe P, Galappaththy P, Constantine GR, et al. Cinnamomum zeylanicum (Ceylon cinnamon) as a potential pharmaceutical agent for type-2 diabetes mellitus: study protocol for a randomized controlled trial. Trials 2017; 18: 446.
Behbahani BA, Falah F, Arab FL, et al. Chemical composition and antioxidant, antimicrobial, and antiproliferative activities of Cinnamomum zeylanicum bark essential oil. Evid Based Complement Alternat Med. 2020; 2020: 5190603. https://doi.org/10.1155/2020/5190603
Lugasi A. Distribution of food supplements containing herbal active ingredients: legal environment, peer review. In: Blázovics A, Mézes M. (eds.) Natural active ingredients in modern medicine. [Növényi hatóanyagokat tartalmazó étrend-kiegészítők forgalmazása: jogi környezet, szakértői értékelés. In: Blázovics A, Mézes M. (szerk.) Természetes hatóanyagok a modern orvoslásban.] Szent István Egyetemi Kiadó Nonprofit Kft., Gödöllő, 2014; pp. 28–32. [Hungarian]