Összefoglaló. Számos adat igazolja, hogy az inzulinrezisztencia gyakori jelenség gyermek- és serdülőkorban, és szoros kapcsolatban áll a cardiovascularis kockázat növekedésével, ami miatt a kérdéskörre az életnek ebben a korai szakaszában is kiemelt figyelmet kell fordítani. Ma már egyre több ismerettel rendelkezünk a kockázati tényezőket illetően, nincs azonban egységes álláspont az inzulinrezisztencia meghatározására vonatkozóan a klinikai gyakorlatban, és nem rendelkezünk megfelelő laboratóriumi markerekkel, melyek segítségével a veszélyeztetetteket széles körben eredményesen lehetne azonosítani. Mindezek alapján a laboratóriumi módszerrel történő szűrés ebben az életkorban nem indokolt, azonban a társuló és következményes kórállapotok klinikai alapon történő felismerésére törekedni kell. A cardiovascularis kockázat megelőzésére irányuló életmódbeli prevenció hatásos az inzulinrezisztencia csökkentésében, a gyakorlatban azonban kivitelezése és eredményessége korlátozott. A gyógyszeres intervenció jelenleg ebben az életkorban csak egyes szelektált esetekben kerülhet alkalmazásra. További klinikai kutatásokra van szükség az inzulinrezisztencia mérése, az életmódbeli és gyógyszeres intervenciós lehetőségek területén annak érdekében, hogy sikeres stratégiák legyenek kialakíthatók a cardiovascularis halálozás megelőzése, csökkentése érdekében. Orv Hetil. 2021; 162(11): 403–412.
Summary. Numerous data confirm that insulin resistance is a common phenomenon in children, and closely links to an increase in cardiovascular risk, therefore it is urgent to pay attention to this from early childhood. Today, we have more and more knowledge about risk factors, but there is no common position on the definition of insulin resistance in clinical practice and we do not have adequate laboratory markers to identify those at risk effectively. Based on all these factors, laboratory screening is not justified at this age, however, efforts should be made to recognize associated and consequent conditions on a clinical basis. Lifestyle prevention to prevent cardiovascular risk is effective in reducing insulin resistance, but in practice its implementation and effectiveness are limited. At present, pharmacological intervention can only be used in certain selected cases with this age group. Further clinical research is needed to measure insulin resistance, lifestyle and drug intervention options in order to develop successful strategies to prevent and reduce cardiovascular death. Orv Hetil. 2021; 162(11): 403–412.
Peplies J, Jiménez-Pavón D, Savva SC, et al. Percentiles of fasting serum insulin, glucose, HbA1c and HOMA-IR in pre-pubertal normal weight European children from the IDEFICS cohort. Int J Obes (Lond). 2014; 38(Suppl 2): S39–S47.
Singh B, Saxena A. Surrogate markers of insulin resistance: a review. World J Diabetes 2010; 1: 36–47.
Grant DB. Fasting serum insulin levels in childhood. Arch Dis Child. 1967; 42: 375–378.
Allard P, Delvin EE, Paradis G, et al. Distribution of fasting plasma insulin, free fatty acids, and glucose concentrations and of homeostasis model assessment of insulin resistance in a representative sample of Quebec children and adolescents. Clin Chem. 2003; 49: 644–649.
Mellerio H, Alberti C, Druet C, et al. Novel modeling of reference values of cardiovascular risk factors in children aged 7 to 20 years. Pediatrics 2012; 129: e1020–e1029.
Aradillas-García C, Rodríguez-Morán M, Garay-Sevilla ME, et al. Distribution of the homeostasis model assessment of insulin resistance in Mexican children and adolescents. Eur J Endocrinol. 2012; 166: 301–306.
Masuccio FG, Lattanzio FM, Matera S, et al. Insulin sensitivity in prepubertal Caucasian normal weight children. J Pediatr Endocrinol Metab. 2009; 22: 695–702.
Steene-Johannessen J, Kolle E, Anderssen SA, et al. Cardiovascular disease risk factors in a population-based sample of Norwegian children and adolescents. Scand J Clin Lab Invest. 2009; 69: 380–386.
Tagi VM, Giannini C, Chiarelli F. Insulin resistance in children. Front Endocrinol (Lausanne). 2019; 10: 342.
Semple RK, Savage DB, Cochran EK, et al. Genetic syndromes of severe insulin resistance. Endocr Rev. 2011; 32: 498–514.
Reinehr T. Metabolic syndrome in children and adolescents: a critical approach considering the interaction between pubertal stage and insulin resistance. Curr Diab Rep. 2016; 16: 8.
Magge SN, Goodman E, Armstrong SC, et al. The metabolic syndrome in children and adolescents: shifting the focus to cardiometabolic risk factor clustering. Pediatrics 2017; 140: e20171603.
Huang-Doran I, Tomlinson P, Payne F, et al. Insulin resistance uncoupled from dyslipidemia due to C-terminal PIK3R1 mutations. JCI Insight 2016; 1: e88766.
Wittcopp C, Conroy R. Metabolic syndrome in children and adolescents. Pediatr Rev. 2016; 37: 193–202.
Ferrannini E, Natali A, Bell P, et al. Insulin resistance and hypersecretion in obesity. European Group for the Study of Insulin Resistance (EGIR). J Clin Invest. 1997; 100: 1166–1173.
Ságodi L, Barkai L, Tombácz A, et al. Investigation of hyperinsulinaemia, insulin-like growth factor-1, insulin-like growth factor-binding protein-1, sex hormone binding-globulin in prepubertal girls and pubertal girls with a history of premature adrenarche. [A hyperinsulinaemia, az inzulinszerű növekedési faktor-1, inzulinszerű növekedési faktort kötő fehérje-1, a nemi hormont kötő globulin vizsgálata a prepubertáskorú és pubertáskorú leányoknál, akiknél praematurus adrenarche lépett fel.] Orv Hetil. 2003; 144: 67–72. [Hungarian]
Tobisch B, Blatniczky L, Barkai L. Relationship between insulin resistance and puberty in children with increased cardiometabolic risk. [Inzulinrezisztencia és pubertás kapcsolata megnövekedett kardiometabolikus kockázatú gyermekekben.] Orv Hetil. 2011; 152: 1068–1074. [Hungarian]
Goran MI, Bergman RN, Cruz ML, et al. Insulin resistance and associated compensatory responses in African-American and Hispanic children. Diabetes Care 2002; 25: 2184–2190.
Whincup PH, Gilg JA, Papacosta O, et al. Early evidence of ethnic differences in cardiovascular risk: cross sectional comparison of British South Asian and white children. BMJ 2002; 324: 635.
Arslanian SA, Saad R, Lewy V, et al. Hyperinsulinemia in African-American children: decreased insulin clearance and increased insulin secretion and its relationship to insulin sensitivity. Diabetes 2002; 51: 3014–3019.
Tobisch B, Blatniczky L, Barkai L. Cardiometabolic risk factors and insulin resistance in obese children and adolescents: relation to puberty. Pediatr Obes. 2015; 10: 37–44.
Arellano-Ruiz P, García-Hermoso A, Cavero-Redondo I, et al. Homeostasis model assessment cut-off points related to metabolic syndrome in children and adolescents: a systematic review and meta-analysis. Eur J Pediatr. 2019; 178: 1813–1822.
Eriksson JG, Forsén T, Tuomilehto J, et al. Early adiposity rebound in childhood and risk of type 2 diabetes in adult life. Diabetologia 2003; 46: 190–194.
Cho WK, Suh BK. Catch-up growth and catch-up fat in children born small for gestational age. Korean J Pediatr. 2016; 59: 1–7.
Cianfarani S, Geremia C, Germani D, et al. Insulin resistance and insulin-like growth factors in children with intrauterine growth retardation. Is catch-up growth a risk factor? Horm Res. 2001; 55(Suppl 1): 7–10.
Csaba G. Effect of endocrine disruptor phytoestrogens on the immune system: present and future. Acta Microbiol Immunol Hung. 2018; 65: 1–14.
Csaba G. Hormesis and immunity: a review. Acta Microbiol Immunol Hung. 2019; 66: 155–168.
Babik B, Peták F, Agócs S, et al. Diabetes mellitus: endothelial dysfunction and changes in hemostasis. [Diabetes mellitus: endotheldiszfunkció és haemostasiselváltozások.] Orv Hetil. 2018; 159: 1335–1345. [Hungarian]
Vincze Á, Kertész L, Czeglédi E. The relationship between diabetes, stress and sleep problems in the light of the Hungarostudy 2013 research data. [A diabetes, a stressz és az alvásproblémák kapcsolata a Hungarostudy 2013 kutatás adatainak fényében.] Orv Hetil. 2019; 160: 1872–1880. [Hungarian]
Lee CJ, Sears CL, Maruthur N. Gut microbiome and its role in obesity and insulin resistance. Ann N Y Acad Sci. 2020; 1461: 37–52.
Kalliomäki M, Collado MC, Salminen S, et al. Early differences in fecal microbiota composition in children may predict overweight. Am J Clin Nutr. 2008; 87: 534–538.
Mastrangelo A, Martos-Moreno GÁ, García A, et al. Insulin resistance in prepubertal obese children correlates with sex-dependent early onset metabolomic alterations. Int J Obes (Lond). 2016; 40: 1494–1502.
Hwu CM. Measurements of insulin resistance in hypertension: where are we now? J Hum Hypertens. 2007; 21: 693–696.
Lee S, Muniyappa R, Yan X, et al. Comparison between surrogate indexes of insulin sensitivity and resistance and hyperinsulinemic euglycemic clamp estimates in mice. Am J Physiol Endocrinol Metab. 2008; 294: E261–E270.
Shashaj B, Luciano R, Contoli B, et al. Reference ranges of HOMA-IR in normal-weight and obese young Caucasians. Acta Diabetol. 2016; 53: 251–260.
van der Aa MP, Knibbe CA, Boer A, et al. Definition of insulin resistance affects prevalence rate in pediatric patients: a systematic review and call for consensus. J Pediatr Endocrinol Metab. 2017; 30: 123–131.
Giannini C, Santoro N, Caprio S, et al. The triglyceride-to-HDL cholesterol ratio: association with insulin resistance in obese youths of different ethnic backgrounds. Diabetes Care 2011; 34: 1869–1874.
McAuley KA, Williams SM, Mann JI, et al. Diagnosing insulin resistance in the general population. Diabetes Care 2001; 24: 460–464.
Matsuda M, DeFronzo RA. Insulin sensitivity indices obtained from oral glucose tolerance testing: comparison with the euglycemic insulin clamp. Diabetes Care 1999; 22: 1462–1470.
Soonthornpun S, Setasuban W, Thamprasit A, et al. Novel insulin sensitivity index derived from oral glucose tolerance test. J Clin Endocrinol Metab. 2003; 88: 1019–1023.
Brown RJ, Yanovski JA. Estimation of insulin sensitivity in children: methods, measures and controversies. Pediatr Diabetes 2014; 15: 151–161.
Levy-Marchal C, Arslanian S, Cutfield W, et al. Insulin resistance in children: consensus, perspective, and future directions. J Clin Endocrinol Metab. 2010; 95: 5189–5198.
Danforth E Jr. Failure of adipocyte differentiation causes type II diabetes mellitus? Nat Genet. 2000; 26: 13.
de Jesus, JM; Expert Panel on Integrated Guidelines for Cardiovascular Health and Risk Reduction in Children and Adolescents; National Heart, Lung, and Blood Institute. Summary report. Pediatrics 2011; 128(Suppl 5): S213–S256.
Styne DM, Arslanian SA, Connor EL, et al. Pediatric obesity – assessment, treatment, and prevention: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2017; 102: 709–757.
Khokhar A, Umpaichitra V, Chin VL, et al. Metformin use in children and adolescents with prediabetes. Pediatr Clin North Am. 2017; 64: 1341–1353.
Knowler WC, Barrett-Connor E, Fowler SE, et al. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med. 2002; 346: 393–403.
Danne T, Biester T, Kapitzke K, et al. Liraglutide in an adolescent population with obesity: a randomized, double-blind, placebo-controlled 5-week trial to assess safety, tolerability, and pharmacokinetics of liraglutide in adolescents aged 12–17 years. J Pediatr. 2017; 181: 146–153.e3.
Danne T, Biester T, Kordonouri O. Combined SGLT1 and SGLT2 inhibitors and their role in diabetes care. Diabetes Technol Ther. 2018; 20 (Suppl 2): S269–S277.
Guo H, Fang C, Huang Y, et al. The efficacy and safety of DPP4 inhibitors in patients with type 1 diabetes: a systematic review and meta-analysis. Diabetes Res Clin Pract. 2016; 121: 184–191.