Összefoglaló. A koronavírus-betegség 2019 (COVID–19)-pandémia komoly kihívás elé állította nemcsak a mikrobiológiai laboratóriumokat, hanem az eredmények interpretálásában a klinikumban dolgozó kollégákat is. Az orvostudomány specializált világában az immunológiai és a fertőző betegségekkel kapcsolatos ismeretek az antimikrobás terápiás megoldások sikeressége, valamint a széles körű vakcináció miatt az idők folyamán számos szakterületen háttérbe szorultak, felfrissítésük sürgető és elengedhetetlen része a pandémiával való megküzdésnek. A diagnosztikai vizsgálatok fontos eszközei a járvány megfékezésének, illetve a betegek ellátásának, azonban a vírus és az emberi szervezet interakciójának megértése elengedhetetlenül szükséges a korrekt epidemiológiai és gyógyászati véleményalkotáshoz. Jelen cikkünk az orvosi gyakorlat számára foglalja össze a súlyos akut légzőszervi szindrómát okozó koronavírus-2 (SARS-CoV-2) kimutatására, valamint az immunrendszer specifikus immunválaszának szerológiai vizsgálatára irányuló, gyakorlatban használatos módszereket, azok helyét, szerepét és értékelésük szempontjait a tudomány jelen állása szerint. Orv Hetil. 2021; 162(15): 563–570.
Summary. The coronavirus disease 2019 (COVID-19) pandemic posed a serious challenge not only for microbiology laboratories, but also for the clinicians in interpretation of the results. In the specialized world of medicine, knowledge of immunological and infectious diseases has been relegated to the background in many disciplines over time due to the success of antimicrobial therapies and widespread vaccination, so updating them is an urgent and essential part of the fight against the pandemic. Diagnostic tests are important tools for controlling the epidemic and caring for patients, but understanding the interaction between the virus and the human body is essential to form a correct epidemiological and medical opinion. This paper summarizes the medical methods for the detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the serological testing of the specific immune response of the immune system, their place, role and criteria of their evaluation according to current scientific knowledge. Orv Hetil. 2021; 162(15): 563–570.
Váradi A, Ferenci T, Falus A. The coronavirus-induced COVID-19 pandemic. Previous experiences and scientific evidences at the end of March, 2020. [A koronavírus okozta COVID–19-pandémia. Korábbi tapasztalatok és tudományos evidenciák 2020. március végén.] Orv Hetil. 2020; 161: 644–651. [Hungarian]
Harrison AG, Lin T, Wang P. Mechanisms of SARS-CoV-2 transmission and pathogenesis. Trends Immunol. 2020; 41: 1100–1115.
Kyrou I, Randeva HS, Spandidos DA, et al. Not only ACE2. The quest for additional host cell mediators of SARS-CoV-2 infection: neuropilin-1 (NRP1) as a novel SARS-CoV-2 host cell entry mediator implicated in COVID-19. Signal Transduct Target Ther. 2021; 6: 21.
Cevik M, Kuppalli K, Kindrachuk J, et al. Virology, transmission, and pathogenesis of SARS-CoV-2. BMJ 2020; 371: m3862.
Althouse BM, Wenger EA, Miller JC, et al. Superspreading events in the transmission dynamics of SARS-CoV-2: opportunities for interventions and control. PLoS Biol. 2020; 18: e3000897.
van Kampen JJ, van de Vijver DA, Fraaij PL, et al. Duration and key determinants of infectious virus shedding in hospitalized patients with coronavirus disease-2019 (COVID-19). Nat Commun. 2021; 12: 267.
Liu Y, Yan LM, Wan L, et al. Viral dynamics in mild and severe cases of COVID-19. Lancet Infect Dis. 2020; 20: 656–657.
Challener DW, Shah A, O’Horo JC, et al. Low utility of repeat real-time PCR testing for SARS-CoV-2 in clinical specimens. Mayo Clin Proc. 2020; 95: 1942–1945.
Vandenberg O, Martiny D, Rochas O, et al. Considerations for diagnostic COVID-19 tests. Nat Rev Microbiol. 2021; 19: 171–183.
Rezaei M, Razavi Bazaz S, Zhand S, et al. Point of care diagnostics in the age of COVID-19. Diagnostics (Basel) 2020; 11: 9.
Rai P, Kumar BK, Deekshit VK, et al. Detection technologies and recent developments in the diagnosis of COVID-19 infection. Appl Microbiol Biotechnol. 2021; 105: 441–455.
Machado BA, Hodel KV, Barbosa-Júnior VG, et al. The main molecular and serological methods for diagnosing COVID-19: an overview based on the literature. Viruses 2020; 13: 40.
Mak GC, Cheng PK, Lau SS, et al. Evaluation of rapid antigen test for detection of SARS-CoV-2 virus. J Clin Virol. 2020; 129: 104500.
Jendrny P, Schulz C, Twele F, et al. Scent dog identification of samples from COVID-19 patients – a pilot study. BMC Infect Dis. 2020; 20: 536.
Walker HJ, Burrell MM. Could breath analysis by MS could be a solution to rapid, non-invasive testing for COVID-19? Bioanalysis 2020; 12: 1213–1217.
Valkó A, Lőrincz M. Illustrated book of immunology. [Immunológiai illusztrációk könyve.) A/3 Nyomdaipari és Kiadói Szolgáltató Kft., Budapest, 2020. [Hungarian]
Blanco-Melo D, Nilsson-Payant BE, Liu WC, et al. Imbalanced host response to SARS-CoV-2 drives development of COVID-19. Cell 2020; 181: 1036-1045.e9.
Sokolowska M, Lukasik ZM, Agache I, et al. Immunology of COVID-19: mechanisms, clinical outcome, diagnostics, and perspectives. A report of the European Academy of Allergy and Clinical Immunology (EAACI). Allergy 2020; 75: 2445–2476.
Diao B, Wang C, Tan Y, et al. Reduction and functional exhaustion of T cells in patients with coronavirus disease 2019 (COVID-19). Front Immunol. 2020; 11: 827.
Lu L, Zhang H, Zhan M, et al. Antibody response and therapy in COVID-19 patients: what can be learned for vaccine development? Sci China Life Sci. 2020; 63: 1833–1849.
Lee WS, Wheatley AK, Kent SJ, et al. Antibody-dependent enhancement and SARS-CoV-2 vaccines and therapies. Nat Microbiol. 2020; 5: 1185–1191.
Khamsi R. Rogue antibodies could be driving severe COVID-19. Nature 2021; 590: 29–31.
Peeling RW, Wedderburn CJ, Garcia PJ, et al. Serology testing in the COVID-19 pandemic response. Lancet Infect Dis. 2020; 20: e245–e249.
Food and Drug Administration. Insight into FDA’s revised policy on antibody tests: prioritizing access and accuracy. Available from: https://www.fda.gov/news-events/fda-voices/insight-fdas-revised-policy-antibody-tests-prioritizing-access-and-accuracy [accessed: February 1, 2021].
Food and Drug Administration. Certain COVID-19 serology/antibody tests should not be used – letter to clinical laboratory staff and health care providers. Available from: https://www.fda.gov/medical-devices/letters-health-care-providers/certain-covid-19-serologyantibody-tests-should-not-be-used-letter-clinical-laboratory-staff-and [accessed: February 1, 2021].
Theel ES, Slev P, Wheeler S, et al. The role of antibody testing for SARS-CoV-2: is there one? J Clin Microbiol. 2020; 58: e00797-20.
Food and Drug Administration. EUA authorized serology test performance. Available from: https://www.fda.gov/medical-devices/coronavirus-disease-2019-covid-19-emergency-use-authorizations-medical-devices/eua-authorized-serology-test-performance [accessed: February 1, 2021].
European Commission. CE marking. Available from: https://ec.europa.eu/growth/single-market/ce-marking_en [accessed: February 1, 2021].
European Commission. Medical devices – overview. Available from: https://ec.europa.eu/health/md_sector/overview_en [accessed: February 1, 2021].
Holzmann H. Diagnosis of tick-borne encephalitis. Vaccine 2003; 21(Suppl 1): S36–S40.
To KK, Tsang OT, Leung WS, et al. Temporal profiles of viral load in posterior oropharyngeal saliva samples and serum antibody responses during infection by SARS-CoV-2: an observational cohort study. Lancet Infect Dis. 2020; 20: 565–574.
Zhao J, Yuan Q, Wang H, et al. Antibody responses to SARS-CoV-2 in patients with novel coronavirus disease 2019. Clin Infect Dis. 2020; 71: 2027–2034.
Lou B, Li TD, Zheng SF, et al. Serology characteristics of SARS-CoV-2 infection after exposure and post-symptom onset. Eur Resp J. 2020; 56: 2000763.
Long QX, Liu BZ, Deng HJ, et al. Antibody responses to SARS-CoV-2 in patients with COVID-19. Nat Med. 2020; 26: 845–848.
Lisboa Bastos M, Tavaziva G, Abidi SK, et al. Diagnostic accuracy of serological tests for COVID-19: systematic review and meta-analysis. BMJ 2020; 370: m2516.
Jiang C, Wang Y, Hu M, et al. Antibody seroconversion in asymptomatic and symptomatic patients infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Clin Transl Immunology 2020; 9: e1182.
Staines HM, Kirwan DE, Clark DJ, et al. IgG seroconversion and pathophysiology in severe acute respiratory syndrome coronavirus 2 infection. Emerg Infect Dis. 2021; 27: 85–91.
Fu Y, Li Y, Guo E, et al. Dynamics and correlation among viral positivity, seroconversion, and disease severity in COVID-19: a retrospective study. Ann Intern Med. 2020 Dec 8. . [Epub ahead of print]
Tuaillon E, Bolloré K, Pisoni A, et al. Detection of SARS-CoV-2 antibodies using commercial assays and seroconversion patterns in hospitalized patients. J Infect. 2020; 81: e39–e45.
Gudbjartsson DF, Norddahl GL, Melsted P, et al. Humoral immune response to SARS-CoV-2 in Iceland. N Engl J Med. 2020; 383: 1724–1734.
Sun B, Feng Y, Mo X, et al. Kinetics of SARS-CoV-2 specific IgM and IgG responses in COVID-19 patients. Emerg Microbes Infect. 2020; 9: 940–948.
Xu X, Sun J, Nie S, et al. Seroprevalence of immunoglobulin M and G antibodies against SARS-CoV-2 in China. Nat Med. 2020; 26: 1193–1195.
Iwasaki A, Yang Y. The potential danger of suboptimal antibody responses in COVID-19. Nat Rev Immunol. 2020; 20: 339–341.
Baron RC, Risch L, Weber M, et al. Frequency of serological non-responders and false-negative RT-PCR results in SARS-CoV-2 testing: a population-based study. Clin Chem Lab Med. 2020; 58: 2131–2140.
Oved K, Olmer L, Shemer-Avni Y, et al. Multi-center nationwide comparison of seven serology assays reveals a SARS-CoV-2 non-responding seronegative subpopulation. EClinicalMedicine 2020; 29: 100651.
Röltgen K, Powell AE, Wirz OF, et al. Defining the features and duration of antibody responses to SARS-CoV-2 infection associated with disease severity and outcome. Sci Immunol. 2020; 5: eabe0240.
Jeyanathan M, Afkhami S, Smaill F, et al. Immunological considerations for COVID-19 vaccine strategies. Nat Rev Immunol. 2020; 20: 615–632.
Chao YX, Rötzschke O, Tan EK. The role of IgA in COVID-19. Brain Behav Immun. 2020; 87: 182–183.
Dan JM, Mateus J, Kato Y, et al. Immunological memory to SARS-CoV-2 assessed for up to 8 months after infection. Science 2021; 371: eabf4063.
Pai M, Denkinger CM, Kik SV, et al. Gamma interferon release assays for detection of Mycobacterium tuberculosis infection. Clin Microbiol Rev. 2014; 27: 3–20.