View More View Less
  • 1 Semmelweis Egyetem, Általános Orvostudományi Kar, Urológiai Klinika, , Budapest, Üllői út 78/B, 1082
  • | 2 Országos Onkológiai Intézet, Urogenitális Tumorok és Klinikai Farmakológiai Osztály, , Budapest
  • | 3 Duisburg-Essen Egyetem, Urológiai Klinika, , Essen
Open access

Összefoglaló. Az immunrendszer nem megfelelő működése meghatározó szerepet játszik a daganatok kialakulásában, progressziójában és az egyes terápiák hatékonyságában is. A bélrendszer baktériumai a szervezet immunitásán keresztül képesek befolyásolni a szervezet gyógyszeres terápiákra adott válaszreakcióját, kiváltképpen az immunellenőrzőpont-gátló kezelések hatását. Az újgenerációs nukleinsav-szekvenálási technológiák felhasználásával részletes képet kaphatunk a szervezetben jelen lévő baktériumok minőségi és mennyiségi viszonyairól. A közelmúltban összefüggést igazoltak a vastagbéldaganat, a melanoma, a vesesejtes carcinoma és a nem kissejtes tüdőrák esetén alkalmazott immunellenőrzőpont-gátló terápiák hatékonysága és a bél mikrobiom-összetétele között. Számos olyan baktériumot azonosítottak, melynek jelenlétéből, illetve mennyiségéből következtethetünk az egyes kezelésekkel szembeni egyéni érzékenységre. Ezzel összhangban, az antibiotikumkezelés által okozott dysbiosis növelte az immunellenőrzőpont-gátló terápia sikertelenségének kockázatát. Ezen eredmények tükrében a jövőben a mikrobiom-összetétel meghatározása is fontos tényező lehet az immunterápiák hatékonyságának előrejelzésében, illetve egyre inkább bizonyított, hogy a széles spektrumú antibiotikumkezelés a legtöbbször csökkenti a daganatellenes immunterápiák hatékonyságát. Jelenleg folyó klinikai vizsgálatok pedig a mikrobiom-összetétel mesterséges úton történő megváltoztatásának terápiás lehetőségeit tanulmányozzák. Bebizonyosodott, hogy a korábbi állásponttal szemben a vizelet nem steril. DNS-szekvenálás alkalmazásával számos olyan, a vizeletben előforduló baktériumot sikerült azonosítani, melynek jelenléte hozzájárulhat a húgyhólyagrák kialakulásához és progressziójához, illetve a húgyhólyagban lokálisan alkalmazott BCG-terápia hatékonyságához. Jelen munkában a közelmúlt publikációit feldolgozva összefoglaljuk, mely baktériumok jelenléte hozható összefüggésbe a különböző daganatok kialakulásával, progressziójával és terápiarezisztenciájával. Orv Hetil. 2020; 162(15): 579–586.

Summary. Dysfunction of the immune system plays a crucial role in the development and progression of cancer as well as the effectiveness of antitumor therapies. Gut microbiota, due to their impact on the immune system, are able to influence response to anticancer drug therapies. Next-generation DNA-sequencing technologies enabled a comprehensive quantitative and qualitative exploration of the gut microbiome. An increasing body of evidence indicates the association between the efficacy of immune checkpoint inhibitor therapies and gut microbiome composition in colorectal cancer, malignant melanoma, renal cell carcinoma, and non-small cell lung cancer. Recently, several bacterial strains and species were shown to be associated with treatment efficacies. In accordance, dysbiosis caused by antibiotic treatment was found to increase the risk of failure to immune checkpoint inhibitor therapies. In the light of these results, examination of microbiome composition may become an important factor for the prediction of immunotherapies. Currently ongoing clinical trials are investigating the potential of therapeutic alteration of microbiome composition. Contrary to the previous view, urine has been shown not to be sterile. By using sensitive DNA-sequencing technologies, several urinary bacteria could be identified which may contribute to the development and progression of bladder cancer and may influence the efficacy of intravesical BCG therapy. In the present work, we summarize recent studies that identified the presence of certain bacteria associated with the development, progression, and therapy resistance of various cancers. Orv Hetil. 2020; 162(15): 579–586.

  • 1

    Barna I, Nyúl D, Szentes T, et al. Review of the relation between gut microbiome, metabolic disease and hypertension. [A bélmikrobiom, a metabolikus betegségek és a hypertonia kapcsolatának irodalmi áttekintése.] Orv Hetil. 2018; 159: 346–351. [Hungarian]

  • 2

    Fekete Sz, Szabó D, Tamás L, et al. The role of the microbiome in otorhinolaryngology. [A mikrobiom szerepe a fül-orr-gégészetben.] Orv Hetil. 2019; 160: 1533–1541. [Hungarian]

  • 3

    Bersanelli M, Santoni M, Ticinesi A, et al. The urinary microbiome and anticancer immunotherapy: the potentially hidden role of unculturable microbes. Target Oncol. 2019; 14: 247–252.

  • 4

    Goodman B, Gardner H. The microbiome and cancer. J Pathol. 2018; 244: 667–676.

  • 5

    Francescone R, Hou V, Grivennikov IS. Microbiome, inflammation and cancer. Cancer J. 2014; 20: 181–189.

  • 6

    Chaudhary N, Sharma AK, Agarwal P, et al. 16S classifier: a tool for fast and accurate taxonomic classification of 16S rRNA hypervariable regions in metagenomic datasets. PLoS ONE 2015; 10: e0116106.

  • 7

    Dave M, Higgins PD, Middha S, et al. The human gut microbiome: current knowledge, challenges, and future directions. Transl Res. 2012; 160: 246–257.

  • 8

    Moustafa A, Li W, Singh H, et al. Microbial metagenome of urinary tract infection. Sci Rep. 2018; 8: 4333.

  • 9

    Siddiqui H, Nederbragt AJ, Lagesen K, et al. Assessing diversity of the female urine microbiota by high throughput sequencing of 16S rDNA amplicons. BMC Microbiol. 2011; 11: 244.

  • 10

    Wolfe AJ, Brubaker L. “Sterile urine” and the presence of bacteria. Eur Urol. 2015; 68: 173–174.

  • 11

    Puhr M, De Marzo A, Isaacs W, et al. Inflammation, microbiota, and prostate cancer. Eur Urol Focus 2016; 2: 374–382.

  • 12

    Gopalakrishnan V, Helmink BA, Spencer CN, et al. The influence of the gut microbiome on cancer, immunity, and cancer immunotherapy. Cancer Cell 2018; 33: 570–580.

  • 13

    Picardo SL, Coburn B, Hansen AR. The microbiome and cancer for clinicians. Crit Rev Oncol Hematol. 2019; 141: 1–12.

  • 14

    McQuade JL, Daniel CR, Helmink BA, et al. Modulating the microbiome to improve therapeutic response in cancer. Lancet Oncol. 2019; 20: e77–e91.

  • 15

    Markowski MC, Boorjian SA, Burton JP, et al. The microbiome and genitourinary cancer: a collaborative review. Eur Urol. 2019; 75: 637–646.

  • 16

    Alexander JL, Wilson ID, Teare J, et al. Gut microbiota modulation of chemotherapy efficacy and toxicity. Nat Rev Gastroenterol Hepatol. 2017; 14: 356–365.

  • 17

    Xu X, Zhang X. Effects of cyclophosphamide on immune system and gut microbiota in mice. Microbiol Res. 2015; 171: 97–106.

  • 18

    Vétizou M, Pitt JM, Daillère R, et al. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science 2015; 350: 1079–1084.

  • 19

    Rosenberg JE, Hoffman-Censits J, Powles T, et al. Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: a single-arm, multicentre, phase 2 trial. Lancet 2016; 387: 1909–1920.

  • 20

    Bellmunt J, Powles T, Vogelzang NJ. A review on the evolution of PD-1/PD-L1 immunotherapy for bladder cancer: the future is now. Cancer Treat Rev. 2017; 54: 58–67.

  • 21

    Sivan A, Corrales L, Hubert N, et al. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science 2015; 350: 1084–1089.

  • 22

    Matson V, Fessler J, Bao R, et al. The commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma patients. Science 2018; 359: 104–108.

  • 23

    Gopalakrishnan V, Spencer CN, Nezi L, et al. Gut microbiome modulates response to anti- PD-1 immunotherapy in melanoma patients. Science 2018; 359: 97–103.

  • 24

    Frankel AE, Coughlin LA, Kim J, et al. Metagenomic shotgun sequencing and unbiased metabolomic profiling identify specific human gut microbiota and metabolites associated with immune checkpoint therapy efficacy in melanoma patients. Neoplasia 2017; 19: 848–855.

  • 25

    Chaput N, Lepage P, Coutzac C, et al. Baseline gut microbiota predicts clinical response and colitis in metastatic melanoma patients treated with ipilimumab. Ann Oncol. 2017; 28: 1368–1379.

  • 26

    Routy B, Le Chatelier E, Derosa L, et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science 2018; 359: 91–97.

  • 27

    Derosa L, Hellmann MD, Spaziano M, et al. Negative association of antibiotics on clinical activity of immune checkpoint inhibitors in patients with advanced renal cell and non-small-cell lung cancer. Ann Oncol. 2018; 29: 1437–1444.

  • 28

    Kaderbhai C, Richard C, Fumet JD, et al. Antibiotic use does not appear to influence response to nivolumab. Anticancer Res. 2017; 37: 3195–3200.

  • 29

    Huemer F, Rinnerthaler G, Westphal T, et al. Impact of antibiotic treatment on immune-checkpoint blockade efficacy in advanced non-squamous non-small cell lung cancer. Oncotarget 2018; 9: 16512–16520.

  • 30

    Ahmed J, Kumar A, Parikh K, et al. Use of broad-spectrum antibiotics impacts outcome in patients treated with immune checkpoint inhibitors. Oncoimmunology 2018; 7: e1507670.

  • 31

    Mielgo-Rubio X, Chara L, Sotelo-Lezama M, et al. MA10. 01 Antibiotic use and PD-1 inhibitors: shorter survival in lung cancer, especially when given intravenously. Type of infection also matters. J Thorac Oncol. 2018; 13: S389.

  • 32

    Do TP, Hegde AM, Cherry CR, et al. Antibiotic use and overall survival in lung cancer patients receiving nivolumab. J Clin Oncol. 2018; 36(15 Suppl): e15109.

  • 33

    Lalani A-KA, Xie W, Lin X, et al. Antibiotic use and outcomes with systemic therapy in metastatic renal cell carcinoma (mRCC). J Clin Oncol. 2018; 36(6 Suppl): 607.

  • 34

    Galli G, Triulzi T, Proto C, et al. Association between antibiotic-immunotherapy exposure ratio and outcome in metastatic non small cell lung cancer. Lung Cancer 2019; 132: 72–78.

  • 35

    Elkrief A, El Raichani L, Richard C, et al. Antibiotics are associated with decreased progression-free survival of advanced melanoma patients treated with immune checkpoint inhibitors. Oncoimmunology 2019; 8: e1568812.

  • 36

    Ouaknine Krief J, Helly de Tauriers P, Dumenil C, et al. Role of antibiotic use, plasma citrulline and blood microbiome in advanced non-small cell lung cancer patients treated with nivolumab. J Immunother Cancer 2019; 7: 176.

  • 37

    Tinsley N, Zhou C, Tan G, et al. Cumulative antibiotic use significantly decreases efficacy of checkpoint inhibitors in patients with advanced cancer. Oncologist 2020; 25: 55–63.

  • 38

    Pinato DJ, Howlett S, Ottaviani D, et al. Antibiotic treatment prior to immune checkpoint inhibitor therapy as a tumor-agnostic predictive correlate of response in routine clinical practice. J Clin Oncol. 2019; 37(Suppl 8); abstr 147.

  • 39

    Hakozaki T, Okuma Y, Omori M, et al. Impact of prior antibiotic use on the efficacy of nivolumab for non-small cell lung cancer. Oncol Lett. 2019; 17: 2946–2952.

  • 40

    Arbour KC, Mezquita L, Long N, et al. Impact of baseline steroids on efficacy of programmed cell death-1 and programmed death-ligand 1 blockade in patients with non-small-cell lung cancer. J Clin Oncol. 2018; 36: 2872–2878.

  • 41

    Homicsko K, Richtig G, Tuchmann F, et al. Proton pump inhibitors negatively impact survival of PD-1 inhibitor based therapies in metastatic melanoma patients. Ann Oncol. 2018; 29(Suppl 10): x39–x43.

  • 42

    Wu P, Zhang G, Zhao J, et al. Profiling the urinary microbiota in male patients with bladder cancer in China. Front Cell Infect Microbiol. 2018; 8: 167.

  • 43

    Michaud DS. Chronic inflammation and bladder cancer. Urol Oncol. 2007; 25: 260–268.

  • 44

    Xu W, Yang L, Lee P, et al. Mini-review: Perspective of the microbiome in the pathogenesis of urothelial carcinoma. Am J Clin Exp Urol. 2014; 2: 57–61.

  • 45

    Alfano M, Canducci F, Nebuloni M, et al. The interplay of extracellular matrix and microbiome in urothelial bladder cancer. Nat Rev Urol. 2016; 13: 77–90.

  • 46

    Pederzoli F, Ferrarese R, Amato V, et al. Sex-specific alterations in the urinary and tissue microbiome in therapy-naïve urothelial bladder cancer patients. Eur Urol Oncol. 2020; 3: 784–788.

  • 47

    Bučević Popović V, Šitum M, Chow CET, et al. The urinary microbiome associated with bladder cancer. Sci Rep. 2018; 8: 12157.

  • 48

    Pettenati C, Ingersoll MA. Mechanisms of BCG immunotherapy and its outlook for bladder cancer. Nat Rev Urol. 2018; 15: 615–625.

The author instructions are available in PDF.
Instructions for Authors in Hungarian HERE.
Mendeley citation style is available HERE.

Főszerkesztő - Editor-in-Chief:
 
Zoltán PAPP (professor emeritus, Semmelweis Egyetem, Szülészeti és Nőgyógyászati Klinika, Budapest)

Read the professional career of Zoltán PAPP HERE.

All scientific publications of Zoltán PAPP are collected in the Hungarian Scientific Bibliography.

Főszerkesztő-helyettesek - Assistant Editors-in-Chief: 

  • Erzsébet FEHÉR (professor emeritus, Semmelweis Egyetem, Anatómiai, Szövet- és Fejlődéstani Intézet)
  • Krisztina HAGYMÁSI (egyetemi docens, Semmelweis Egyetem, I. Sebészeti és Intervenciós Gasztroenterológiai Klinika, Budapest)

Főmunkatársak - Senior Editorial Specialists:

  • László KISS (a Debreceni Egyetem habilitált doktora)
  • Gabriella LENGYEL (ny. egyetemi docens, Semmelweis Egyetem, I. Sebészeti és Intervenciós Gasztroenterológiai Klinika, Budapest)
  • Alajos PÁR (professor emeritus, Pécsi Tudományegyetem, I. Belgyógyászati Klinika)

 A Szerkesztőbizottság tagjai – Members of the Editorial Board:

  • Péter ANDRÉKA (főigazgató, Gottsegen György Országos Kardiovaszkuláris Intézet, Nemzeti Szívinfartkus Regiszter, Budapest)
  • Géza ÁCS Jr. (egyetemi tanár Floridában)
  • Csaba BALÁZS (egyetemi tanár, Budai Endokrinközpont, Budapest)
  • Péter BENCSIK (volt folyóirat-kiadás vezető, Akadémiai Kiadó, Budapest)
  • Zoltán BENYÓ (egyetemi tanár, Semmelweis Egyetem, Transzlációs Medicina Intézet, Budapest)
  • Dániel BERECZKI (egyetemi tanár, Semmelweis Egyetem, Neurológiai Klinika, Budapest)
  • Anna BLÁZOVICS (professor emeritus, Semmelweis Egyetem, Farmakognóziai Intézet, Budapest)
  • Elek DINYA (professor emeritus, biostatisztikus, Semmelweis Egyetem, Budapest)
  • Attila DOBOZY (professor emeritus, Szegedi Tudományegyetem, Bőrgyógyászati Klinika, Szeged)
  • András FALUS (professor emeritus, Semmelweis Egyetem, Genetikai, Sejt- és Immunbiológiai Intézet, Budapest)
  • Csaba FARSANG (egyetemi tanár, Szent Imre Oktató Kórház, Belgyógyászati Osztály, Budapest)
  • János FAZAKAS (egyetemi docens, Semmelweis Egyetem, Transzplantációs és Sebészeti Klinika, Budapest)
  • Béla FÜLESDI (egyetemi tanár, Debreceni Egyetem, Aneszteziológiai és Intenzív Terápiás Klinika, Debrecen)
  • Beáta GASZTONYI (egyetemi magántanár, kórházi főorvos, Zala Megyei Kórház, Belgyógyászat, Zalaegerszeg)
  • István GERGELY (egyetemi docens, Marosvásárhelyi Orvosi és Gyógyszerészeti Egyetem, Románia)
  • Judit GERVAIN (osztályvezető főorvos, Fejér Megyei Szent György Kórház, Belgyógyászat, Székesfehérvár)
  • Béla GÖMÖR (professor emeritus, Budai Irgalmasrendi Kórház, Reumatológiai Osztály, Budapest)
  • László GULÁCSI (egyetemi tanár, Óbudai Egyetem, Egészségügyi Közgazdaságtan Tanszék, Budapest)
  • János HANKISS (professor emeritus, Markusovszky Lajos Oktató Kórház, Belgyógyászati Osztály, Szombathely)
  • Örs Péter HORVÁTH (professor emeritus, Pécsi Tudományegyetem, Sebészeti Klinika, Pécs)
  • Béla HUNYADY (egyetemi tanár, Somogy Megyei Kaposi Mór Kórház, Belgyógyászat, Kaposvár)
  • Péter IGAZ (egyetemi tanár, Semmelweis Egyetem, Belgyógyászati és Onkológiai Klinika, Budapest)
  • Ferenc JAKAB (c. egyetemi tanár, Uzsoki Utcai Kórház, Sebészet, Budapest)
  • András JÁNOSI (c. egyetemi tanár, Gottsegen György Országos Kardiovaszkuláris Intézet, Nemzeti Szívinfartkus Regiszter, Budapest)
  • György JERMENDY (egyetemi tanár, Bajcsy-Zsilinszky Kórház, Belgyógyászat, Budapest)
  • László KALABAY (egyetemi tanár, Semmelweis Egyetem, Családorvosi Tanszék, Budapest)
  • János KAPPELMAYER (egyetemi tanár, Debreceni Egyetem, Laboratóriumi Medicina Intézet, Debrecen)
  • Éva KELLER (ny. egyetemi tanár, Semmelweis Egyetem, Igazságügyi és Biztosítás-orvostani Intézet, Budapest)
  • Mátyás KELTAI (ny. egyetemi docens, Gottsegen György Országos Kardiovaszkuláris Intézet, Nemzeti Szívinfartkus Regiszter, Budapest)
  • András KISS (egyetemi tanár, Semmelweis Egyetem, II. Patológiai Intézet, Budapest)
  • László KÓBORI (egyetemi tanár, Semmelweis Egyetem, Transzplantációs és Sebészeti Klinika, Budapest)
  • Lajos KULLMANN (ny. egyetemi tanár, Országos Rehabilitációs Intézet, Budapest)
  • Emese MEZŐSI (egyetemi tanár, Pécsi Tudományegyetem, I. Belgyógyászati Klinika, Pécs)
  • József MOLNÁR (professor emeritus, Szegedi Tudományegyetem, Mikrobiológiai és Immunológiai Intézet, Szeged)
  • Péter MOLNÁR (professor emeritus, Debreceni Egyetem, Magatartástudományi Intézet, Debrecen)
  • Györgyi MŰZES (egyetemi docens, Semmelweis Egyetem, Belgyógyászati és Hematológiai Klinika, Budapest)
  • Bálint NAGY (egyetemi tanár, Debreceni Egyetem, Humángenetikai Tanszék, Debrecen)
  • Endre NAGY (egyetemi tanár, Debreceni Egyetem, Belgyógyászati Intézet, Debrecen) 
  • Péter NAGY (egyetemi tanár, Semmelweis Egyetem, I. Patológiai és Kísérleti Rákkutató Intézet, Budapest)
  • Viktor NAGY (főorvos, Semmelweis Egyetem, Belgyógyászati és Hematológiai Klinika, Budapest)
  • Zoltán Zsolt NAGY (egyetemi tanár, Semmelweis Egyetem, Szemészeti Klinika, Budapest)
  • Balázs NEMES (egyetemi docens, Debreceni Egyetem, Transzplantációs Tanszék, Debrecen)
  • Attila PATÓCS (tudományos főmunkatárs, Semmelweis Egyetem, Belgyógyászati és Hematológiai Klinika, Budapest)
  • Gabriella PÁR (egyetemi docens, Pécsi Tudományegyetem, I. Belgyógyászati Klinika)
  • György PFLIEGLER (egyetemi tanár, Debreceni Egyetem, Ritka Betegségek Tanszéke, Debrecen)
  • István RÁCZ (egyetemi tanár, főorvos, Petz Aladár Megyei Oktató Kórház, Belgyógyászat, Győr)
  • Imre ROMICS (professor emeritus, Semmelweis Egyetem, Urológiai Klinika, Budapest)
  • László Jr. ROMICS (Angliában dolgozik) 
  • Imre RURIK (egyetemi tanár, Debreceni Egyetem, Családorvosi és Foglalkozás-egészségügyi Tanszék, Debrecen)
  • Zsuzsa SCHAFF (professor emeritus, Semmelweis Egyetem, II. Patológiai Intézet, Budapest)
  • Péter SCHMIDT (házi gyermekorvos, Győr)
  • Kornél SIMON (ny. osztályvezető főorvos, Siófoki Kórház, Belgyógyászat, Siófok)
  • Gábor SIMONYI (vezető főorvos, Szent Imre Kórház, Anyagcsere Központ, Budapest)
  • Gábor Márk SOMFAI (egyetemi docens, Semmelweis Egyetem, Szemészeti Klinika, Budapest)
  • Anikó SOMOGYI (ny. egyetemi tanár, Semmelweis Egyetem, Belgyógyászati és Hematológiai Klinika, Budapest)
  • Péter SÓTONYI (professor emeritus, Semmelweis Egyetem, Igazságügyi és Biztosítás-orvostani Intézet, Budapest)
  • Péter Jr. SÓTONYI (egyetemi tanár, Semmelweis Egyetem, Városmajori Szív- és Érsebészeti Klinika, Budapest)
  • Ildikó SÜVEGES (professor emeritus, Semmelweis Egyetem, Szemészeti Klinika, Budapest)
  • György SZABÓ (professor emeritus, Semmelweis Egyetem, Arc-Állcsont-Szájsebészeti és Fogászati Klinika, Budapest)
  • Ferenc SZALAY (professor emeritus, Semmelweis Egyetem, Belgyógyászati és Onkológiai Klinika, Budapest)
  • Miklós SZENDRŐI (professor emeritus, Semmelweis Egyetem, Ortopédiai Klinika, Budapest)
  • István SZILVÁSI (egyetemi tanár, Semmelweis Egyetem, Belgyógyászati és Hematológiai Klinika, Budapest)
  • Miklós TÓTH (egyetemi tanár, Semmelweis Egyetem, Belgyógyászati és Onkológiai Klinika, Budapest)
  • László TRINGER (professor emeritus, Semmelweis Egyetem, Pszichiátriai és Pszichoterápiás Klinika, Budapest)
  • Tivadar TULASSAY (professor emeritus, Semmelweis Egyetem, I. Gyermekgyógyászati Klinika, Budapest)
  • Zsolt TULASSAY (professor emeritus, Semmelweis Egyetem, Belgyógyászati és Hematológiai Klinika, Budapest)
  • Lívia VASAS (ny. könyvtárigazgató, Semmelweis Egyetem, Központi Könyvtár, Budapest)
  • Barna VÁSÁRHELYI (egyetemi tanár, Semmelweis Egyetem, Laboratóriumi Medicina Intézet, Budapest)
  • László VÉCSEI (professor emeritus, Szegedi Tudományegyetem, Neurológiai Klinika, Szeged)
  • Gábor WINKLER (egyetemi tanár, Szent János Kórház, Belgyógyászati Osztály, Budapest)

Nemzetközi szerkesztőbizottság - International Editorial Board:

  • Elnök/President Péter SÓTONYI (Budapest)
  • Ernest ADEGHATE (Al Ain)
  • Ferenc ANTONI (Edinburgh)
  • Maciej BANACH (Łódź)
  • Klára BERENCSI (Rosemont)
  • Angelo BIGNAMINI (Milano)
  • Anupam BISHAYEE (Signal Hill)
  • Hubert E. BLUM (Freiburg)
  • G. László BOROS (Los Angeles)
  • Frank A. CHERVENAK (New York)
  • Meinhard CLASSEN (München)
  • József DÉZSY (Wien)
  • Peter ECKL (Salzburg)
  • Péter FERENCI (Wien)
  • Madelaine HAHN (Erlangen)
  • S. Tamás ILLÉS (Bruxelles)
  • Michael KIDD (Toronto)
  • Andrzej KOKOSZKA (Warsaw)
  • Márta KORBONITS (London)
  • Asim KURJAK (Zagreb)
  • Manfred MAIER (Wien)
  • Neil MCINTYRE (London)
  • Lajos OKOLICSÁNYI (Padova)
  • Amado Salvador PENA (Amsterdam)
  • Guliano RAMADORI (Goettingen)
  • Olivér RÁCZ (Košice)
  • Roberto ROMERO (Detroit)
  • Rainer SCHÖFL (Linz)
  • Zvi VERED (Tel Aviv)
  • Josef VESELY (Olomouc)
  • Ákos ZAHÁR (Hamburg)

Akadémiai Kiadó Zrt. 1117 Budapest
Budafoki út 187-189.
A épület, III. emelet
Phone: (+36 1) 464 8235
Email: orvosihetilap@akademiai.hu

2020  
Total Cites 1277
WoS
Journal
Impact Factor
0,540
Rank by Medicine, General & Internal 155/169 (Q4)
Impact Factor  
Impact Factor 0,310
without
Journal Self Cites
5 Year 0,461
Impact Factor
Journal  0,17
Citation Indicator  
Rank by Journal  Medicine, General & Internal 203/313 (Q4)
Citation Indicator   
Citable 261
Items
Total 229
Articles
Total 32
Reviews
Scimago 21
H-index
Scimago 0,176
Journal Rank
Scimago Medicine (miscellaneous) Q4
Quartile Score  
Scopus 921/1187=0,8
Scite Score  
Scopus General Medicine 494/793 (Q3)
Scite Score Rank  
Scopus 0,283
SNIP  
Days from  28
submission  
to acceptance  
Days from  114
acceptance  
to publication  
Acceptance 72%
Rate

2019  
Total Cites
WoS
1 085
Impact Factor 0,497
Impact Factor
without
Journal Self Cites
0,212
5 Year
Impact Factor
0,396
Immediacy
Index
0,126
Citable
Items
247
Total
Articles
176
Total
Reviews
71
Cited
Half-Life
6,1
Citing
Half-Life
7,3
Eigenfactor
Score
0,00071
Article Influence
Score
0,045
% Articles
in
Citable Items
71,26
Normalized
Eigenfactor
0,08759
Average
IF
Percentile
10,606
Scimago
H-index
20
Scimago
Journal Rank
0,176
Scopus
Scite Score
864/1178=0,4
Scopus
Scite Score Rank
General Medicine 267/529 (Q3)
Scopus
SNIP
0,254
Acceptance
Rate
73%

 

Orvosi Hetilap
Publication Model Hybrid
Submission Fee none
Article Processing Charge 900 EUR/article
Printed Color Illustrations 20 EUR (or 5000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2022 Online subsscription: 858 EUR / 1157 USD
Print + online subscription: 975 EUR / 1352 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Orvosi Hetilap
Language Hungarian
Size A4
Year of
Foundation
1857
Volumes
per Year
1
Issues
per Year
52
Founder Markusovszky Lajos Alapítvány -- Lajos Markusovszky Foundation
Founder's
Address
H-1088 Budapest, Szentkriályi u. 46.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0030-6002 (Print)
ISSN 1788-6120 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Aug 2021 0 65 51
Sep 2021 0 50 54
Oct 2021 0 42 57
Nov 2021 0 26 86
Dec 2021 0 20 63
Jan 2022 0 51 46
Feb 2022 0 0 0