Összefoglaló. A cardiovascularis megbetegedések kialakulását és progresszióját jelentősen befolyásolja az életmód, ezen belül a fizikai aktivitás. A rendszeres testmozgás csökkenti a szív- és érrendszeri kórképek kockázatát, többek között a magas vérnyomásra, a zsíranyagcsere-eltérésekre és az elhízásra gyakorolt kedvező hatásán keresztül, továbbá független tényező a cardiovascularis halálozás szempontjából is. Az artériás érfali merevség az elasztikus artériák falát alkotó extracelluláris mátrix degeneratív eltéréseinek következtében alakul ki a különböző kockázati tényezők hatására. Korábban, különböző populációkon már igazolták az érfali merevség prediktív értékét a cardiovascularis események kialakulásának tekintetében. A pulzushullám-terjedési sebesség mérése a leggyakrabban alkalmazott módszer az érfali merevség meghatározására. A pulzushullám-terjedési sebesség mérésének hasznát a cardiovascularis kimenetel és élettartam becslésében számos populációs szintű követéses vizsgálat igazolja. Jelen munkánkban áttekintjük a rendszeres fizikai aktivitás, az érfali merevség, az érelmeszesedés és a cardiovascularis események közötti összefüggéseket. Összefoglaljuk az edzésnek és az érfali merevség paramétereinek kapcsolatát egészséges populáción vizsgáló legfontosabb tanulmányok eredményeit. Megállapítjuk, hogy az érfali merevség figyelemre méltó, érdekes biomarker a cardiovascularis kockázat becslése során a rendszeresen sportoló személyek esetén is. Mindezek alapján, tekintve annak prognosztikai hasznát, felmerül a pulzushullám-terjedési sebesség mérésének beillesztése a klinikai döntéshozatali folyamatba mind amatőr, mind professzionális sportolók esetében. Orv Hetil. 2021; 162(16): 615–622.
Summary. The development and progression of cardiovascular disorders is importantly dependent on lifestyle factors, including physical activity. Regular physical activity decreases cardiovascular morbidity by ameliorating risk factors such as hypertension, dyslipidemia and obesity, moreover, also independently affects cardiovascular mortality. Arterial stiffness results from a degenerative process affecting mainly the extracellular matrix of elastic arteries under the effect of risk factors. Previously, the independent predictive value of arterial stiffness for cardiovascular events has been demonstrated in various populations. Pulse wave velocity is the most commonly used method for the assessment of arterial stiffness. The value of measuring pulse wave velocity to predict cardiovascular health outcomes and longevity has been established in several population-based longitudinal studies. In this review, we summarize the main associations between regular physical exercise, arterial stiffness, atherosclerotic burden and incident cardiovascular events. We cite findings from the major studies focusing on the effect of training on arterial stiffness parameters in healthy subjects. We conclude that arterial stiffness is emerging as an interesting biomarker for cardiovascular risk stratification in subjects doing regular physical activity. Therefore, the incorporation of pulse wave velocity measurement into clinical decision-making could be indicated in the case of both amateur and professional athletes, given the prognostic information it provides. Orv Hetil. 2021; 162(16): 615–622.
Nocon M, Hiemann T, Müller-Riemenschneider F, et al. Association of physical activity with all-cause and cardiovascular mortality: a systematic review and meta-analysis. Eur J Cardiovasc Prev Rehabil. 2008; 15: 239–246.
Mora S, Cook N, Buring JE, et al. Physical activity and reduced risk of cardiovascular events: potential mediating mechanisms. Circulation 2007; 116: 2110–2118.
Green DJ, Maiorana A, O’Driscoll G, et al. Effect of exercise training on endothelium-derived nitric oxide function in humans. J Physiol. 2004; 561(Pt 1): 1–25.
Kingwell BA, Sherrard B, Jennings GL, et al. Four weeks of cycle training increases basal production of nitric oxide from the forearm. Am J Physiol. 1997; 272(3 Pt 2): H1070–H1077.
Lacolley P, Regnault V, Segers P, et al. Vascular smooth muscle cells and arterial stiffening: relevance in development, aging, and disease. Physiol Rev. 2017; 97: 1555–1617.
Lacolley P, Regnault V, Avolio AP. Smooth muscle cell and arterial aging: basic and clinical aspects. Cardiovasc Res. 2018; 114: 513–528.
Kucharska-Newton AM, Stoner L, Meyer ML. Determinants of vascular age: an epidemiological perspective. Clin Chem. 2019; 65: 108–118.
Fortier C, Agharazii M. Arterial stiffness gradient. Pulse (Basel) 2016; 3: 159–166.
Donato AJ, Eskurza I, Silver AE, et al. Direct evidence of endothelial oxidative stress with aging in humans: relation to impaired endothelium-dependent dilation and upregulation of nuclear factor-κB. Circ Res. 2007; 100: 1659–1666.
Madden KM, Lockhart C, Cuff D, et al. Short-term aerobic exercise reduces arterial stiffness in older adults with type 2 diabetes, hypertension, and hypercholesterolemia. Diabetes Care 2009; 32: 1531–1535.
Shibata S, Fujimoto N, Hastings JL, et al. The effect of lifelong exercise frequency on arterial stiffness. J Physiol. 2018; 596: 2783–2795.
Tanaka H, Dinenno FA, Monahan KD, et al. Aging, habitual exercise, and dynamic arterial compliance. Circulation 2000; 102: 1270–1275.
Cavalcante JL, Lima JA, Redheuil A, et al. Aortic stiffness: current understanding and future directions. J Am Coll Cardiol. 2011; 57: 1511–1522.
Cohn JN, Quyyumi AA, Hollenberg NK, et al. Surrogate markers for cardiovascular disease: functional markers. Circulation 2004; 109(25 Suppl 1): IV31–IV46.
Nemcsik J, Tislér A, Kiss I. Clinical value and measurement of arterial stiffness for the assessment of cardiovascular risk in light of recent results. [Az artériás érfalmerevség cardiovascularis kockázatértéke és mérése a legújabb eredmények tükrében.] Orv Hetil. 2015; 156: 211–215. [Hungarian]
Ben-Shlomo Y, Spears M, Boustred C, et al. Aortic pulse wave velocity improves cardiovascular event prediction: an individual participant meta-analysis of prospective observational data from 17,635 subjects. J Am Coll Cardiol. 2014; 63: 636–646.
Járai Z, Kolossváry E, Szabó I, et al. The potential role of oscillometric devices for ankle-brachial index measurements in clinical practice. [A boka-kar index oszcillometriás elven működő meghatározásának helye a klinikai gyakorlatban.] Orv Hetil. 2018; 159: 176–182. [Hungarian]
Vlachopoulos C, Aznaouridis K, Stefanadis C. Prediction of cardiovascular events and all-cause mortality with arterial stiffness: a systematic review and meta-analysis. J Am Coll Cardiol. 2010; 55: 1318–1327.
Omboni S, Posokhov IN, Kotovskaya YV, et al. Twenty-four-hour ambulatory pulse wave analysis in hypertension management: current evidence and perspectives. Curr Hypertens Rep. 2016; 18: 72.
Ahmadi-Abhari S, Sabia S, Shipley MJ, et al. Physical activity, sedentary behavior, and long-term changes in aortic stiffness: the Whitehall II study. J Am Heart Assoc. 2017; 6: e005974.
Ashor AW, Lara J, Siervo M, et al. Effects of exercise modalities on arterial stiffness and wave reflection: a systematic review and meta-analysis of randomized controlled trials. PLoS ONE 2014; 9: e110034.
Burr JF, Beck JL, Durocher JJ. The relationship of high-intensity cross-training with arterial stiffness. J Sport Health Sci. 2019; 8: 370–375.
Johnson CP, Baugh R, Wilson CA, et al. Age related changes in the tunica media of the vertebral artery: implications for the assessment of vessels injured by trauma. J Clin Pathol. 2001; 54: 139–145.
Miyachi M. Effects of resistance training on arterial stiffness: a meta-analysis. Br J Sports Med. 2013; 47: 393–396.
Evans W, Willey Q, Hanson ED, et al. Effects of resistance training on arterial stiffness in persons at risk for cardiovascular disease: a meta-analysis. Sports Med. 2018; 48: 2785–2795.
Ceciliato J, Costa EC, Azevêdo L, et al. Effect of resistance training on arterial stiffness in healthy subjects: a systematic review and meta-analysis. Curr Hypertens Rep. 2020; 22: 51.
Sardeli AV, Gáspari AF, Chacon-Mikahil MP. Acute, short-, and long-term effects of different types of exercise in central arterial stiffness: a systematic review and meta-analysis. J Sports Med Phys Fitness 2018; 58: 923–932.
Figueroa A, Okamoto T, Jaime SJ, et al. Impact of high- and low-intensity resistance training on arterial stiffness and blood pressure in adults across the lifespan: a review. Pflugers Arch. 2019; 471: 467–478.
Goeder D, Böhm B, Oberhoffer R, et al. Postexercise changes in peripheral and central blood pressure during a 24-hour ambulatory blood pressure monitoring in healthy young men. J Sports Med Phys Fitness 2019; 59: 1593–1598.
Aengevaeren VL, Eijsvogels TM. Coronary atherosclerosis in middle-aged athletes: Current insights, burning questions, and future perspectives. Clin Cardiol. 2020; 43: 863–871.
Koshiba H, Maeshima E. Influence of detraining on temporal changes in arterial stiffness in endurance athletes: a prospective study. J Phys Ther Sci. 2015; 27: 3681–3684.
Tamási L, Miksi Á, Kardos Z, et al. Musculoskeletal relevance of obesity: a new approach to an old topic. [Az elhízás mozgásszervi vonatkozásai: egy régi téma új megközelítésben.] Orv Hetil. 2019; 160: 1727–1734. [Hungarian]
Raschke S, Eckel J. Adipo-myokines: two sides of the same coin – mediators of inflammation and mediators of exercise. Mediators Inflamm. 2013; 2013: 320724.
Planavila A, Redondo I, Hondares E, et al. Fibroblast growth factor 21 protects against cardiac hypertrophy in mice. Nat Commun. 2013; 4: 2019.
Chow WS, Xu A, Woo YC, et al. Serum fibroblast growth factor-21 levels are associated with carotid atherosclerosis independent of established cardiovascular risk factors. Arterioscler Thromb Vasc Biol. 2013; 33: 2454–2459.
Lee SY, Burns SF, Ng KK, et al. Pulse wave velocity is associated with increased plasma oxLDL in ageing but not with FGF21 and habitual exercise. Antioxidants (Basel) 2020; 9: 221.
Inoue K, Fujie S, Hasegawa N, et al. Aerobic exercise training-induced irisin secretion is associated with the reduction of arterial stiffness via nitric oxide production in adults with obesity. Appl Physiol Nutr Metab. 2020; 45: 715–722.
Currie KD, Thomas SG, Goodman JM. Effects of short-term endurance exercise training on vascular function in young males. Eur J Appl Physiol. 2009; 107: 211–218.
Donley DA, Fournier SB, Reger BL, et al. Aerobic exercise training reduces arterial stiffness in metabolic syndrome. J Appl Physiol (1985). 2014; 116: 1396–1404.
Haskell WL, Lee IM, Pate RR, et al. Physical activity and public health: updated recommendation for adults from the American College of Sports Medicine and the American Heart Association. Med Sci Sports Exerc. 2007; 39: 1423–1434.
Whyte LJ, Gill JM, Cathcart AJ. Effect of 2 weeks of sprint interval training on health-related outcomes in sedentary overweight/obese men. Metabolism 2010; 59: 1421–1428.
Vlachopoulos C, Aznaouridis K, Terentes-Printzios D, et al. Prediction of cardiovascular events and all-cause mortality with brachial-ankle elasticity index: a systematic review and meta-analysis. Hypertension 2012; 60: 556–562.