View More View Less
  • 1 Magyar Honvédség Egészségügyi Központ, Szülészet-nőgyógyászati Osztály, Semmelweis Egyetem Gyakorló Kórház, Budapest, Podmaniczky u. 111., 1062
  • | 2 Miskolci Egyetem, Egészségügyi Kar, Miskolc
  • | 3 Semmelweis Egyetem, Általános Orvostudományi Kar, I. Gyermekgyógyászati Klinika, Budapest
Open access

Összefoglaló. A humán mikrobiom az emberi szervezetben és az emberi testfelszínen élő mikrobaközösségek összessége, amelyek többsége a gyomor-bél rendszerben él. Ezek a mikrobaközösségek számos és sokféle baktériumot tartalmaznak, gombákat, vírusokat, archeákat és protozoonokat. Ez a mikrobiális közösség, vagy mikrobiota, a gazdaszervezetben nagyrészt egymással kölcsönösségi viszonyban tenyészik, és gondoskodik a bélben a tápanyagok anyagcseréjéről, kalibrálja az anyagcsere-működést, tanítja az immunrendszert, fenntartja a közösség integritását, és véd a kórokozók ellen. A majdan megszületendő magzat a megfelelő tápanyagellátását az anyai véráramból kapja, és így az anyai szervezetben a mikrobiota indukálta baktériumkomponensek vagy metabolitok hatékonyan átvihetők a magzatba. Az anyai mikrobiális közösségek – ideértve a praenatalis bélrendszeri, hüvelyi, száj- és bőrmikrobiomot – a terhesség alatt valójában kifejezett változásokon mennek keresztül, amelyek befolyásolhatják az egészség megőrzését, és hozzájárulhatnak a közismert betegségek kialakulásához. A magzat nem steril, és immunológiai szempontból sem naiv, hanem az anya révén környezeti ingerek hatásaitól befolyásolva kölcsönhatásba lép az anyai immunrendszerrel. Számos anyai tényező – beleértve a hormonokat, a citokineket és a mikrobiomot – módosíthatja az intrauterin környezetet, ezáltal befolyásolva a magzati immunrendszer fejlődését. A fokozott stresszben élő anyák csecsemőinél nagyobb az allergia és a gyomor-bél rendszeri rendellenességek aránya. A várandós étrendje is befolyásolja a magzati mikrobiomot a méh közvetítésével. A bélflóránk, vagyis a mikrobiom, a belünkben élő mikrobák összessége és szimbiózisa, amelynek kényes egyensúlya már csecsemőkorban kialakul, és döntően meghatározza az intestinalis barrier és a bélasszociált immunrendszer működését. A probiotikumok szaporodásához szükséges prebiotikummal is befolyásolható a bélflóra. A pre- és a probiotikum kombinációja a szimbiotikum. Az anyatej a patogénekkel szemben protektív hatású, részben azáltal, hogy emeli a Bifidobacterium-számot az újszülött bélflórájában. A dysbiosis a kommenzális, egészséges bélflóra megváltozása. Ennek szerepét feltételezik funkcionális gastrointestinalis kórképekben, egyre több pszichiátriai és neurológiai kórképben is, mint az autizmus-spektrumzavar. Orv Hetil. 2021; 162(19): 731–740.

Summary. The human microbiome is the totality of microbe communities living in the human body and on the human body surface, most of which live in the gastrointestinal tract. These microbe communities contain many and varied bacteria, fungi, viruses, archaea and protozoa. This microbial community or microbiota in the host is largely reciprocal and takes care of nutrient metabolism in the gut, calibrates metabolism, teaches the immune system, maintains community integrity, and protects against pathogens. The fetus to be born is adequately supplied with nutrients from the maternal bloodstream, and thus microbial-induced bacterial components or metabolites can be efficiently transferred to the fetus in the maternal body. Maternal microbial communities, including prenatal intestinal, vaginal, oral, and dermal microbiomes, actually undergo pronounced changes during pregnancy that can affect health maintenance and contribute to the development of well-known diseases. The fetus is not sterile or immunologically naïve, but interacts with the maternal immune system through the effects of environmental stimuli through the mother. Many maternal factors, including hormones, cytokines, and the microbiome, can modify the intrauterine environment, thereby affecting the development of the fetal immune system. Infants of mothers under increased stress have higher rates of allergies and gastrointestinal disorders. The diet of the gravida also affects the fetal microbiome through the uterus. Our intestinal flora, or microbiome, is the totality and symbiosis of the microbes living in them, the delicate balance of which is established in infancy and decisively determines the functioning of the intestinal barrier and the intestinal associated immune system. The prebiotic required for the proliferation of probiotics can also affect the intestinal flora. The combination of pre- and probiotic is symbiotic. Breast milk has a protective effect against pathogens, in part by raising the number of Bifidobacteria in the intestinal flora of the newborn. Dysbiosis is a change in the commensal, healthy gut flora. Its role is hypothesized in functional gastrointestinal disorders, as well as in more and more psychiatric and neurological disorders such as the autism spectrum disorder. Orv Hetil. 2021; 162(19): 731–740.

  • 1

    Maranduba CM, De Castro SB, De Souza GT, et al. Intestinal microbiota as modulators of the immune system and neuroimmune system: impact on the host health and homeostasis. J Immunol Res. 2015; 2015: 931574.

  • 2

    Thorburn AN, Macia L, Mackay CR. Diet, metabolites, and “western-lifestyle” inflammatory diseases. Immunity 2014; 40: 833–842.

  • 3

    Smith K, McCoy KD, Macpherson AJ. Use of axenic animals in studying the adaptation of mammals to their commensal intestinal microbiota. Semin Immunol. 2007; 19: 59–69.

  • 4

    Nuriel-Ohayon M, Neuman H, Koren O. Microbial changes during pregnancy, birth, and infancy. Front Microbiol. 2016; 7: 1031.

  • 5

    Mor G, Aldo P, Alvero AB. The unique immunological and microbial aspects of pregnancy. Nat Rev Immunol. 2017; 17: 469–482.

  • 6

    Stinson LF, Payne MS, Keelan JA. Planting the seed: origins, composition, and postnatal health significance of the fetal gastrointestinal microbiota. Crit Rev Microbiol. 2017; 43: 352–369.

  • 7

    Romano-Keeler J, Weitkamp JH. Maternal influences on fetal microbial colonization and immune development. Pediatr Res. 2015; 77: 189–195.

  • 8

    Moles L, Gòmez M, Heilig H, et al. Bacterial diversity in meconium of preterm neonates and evolution of their fecal microbiota during the first month of life. PLoS ONE 2013; 8: e66986.

  • 9

    Bäckhed F, Roswall J, Peng Y, et al. Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe 2015; 17: 690–703. [Erratum: Cell Host Microbe 2015; 17: 852.]

  • 10

    Brugman S, Perdijk O, van Neerven R, et al. Mucosal immune development in early life: setting the stage. Arch Immunol Ther Exp (Warsz). 2015; 63: 251–268.

  • 11

    Smolen KK, Ruck CE, Fortuno ES 3rd, et al. Pattern recognition receptor-mediated cytokine response in infants across 4 continents. J Allergy Clin Immunol. 2014; 133: 818–826.e4.

  • 12

    D’Argenio V. The prenatal microbiome: a new player for human health. High Throughput 2018; 7: 38.

  • 13

    Gosalbes MJ, Llop S, Vallès Y, et al. Meconium microbiota types dominated by lactic acid or enteric bacteria are differentially associated with maternal eczema and respiratory problems in infants. Clin Exp Allergy 2013; 43: 198–211.

  • 14

    Mshvildadze M, Neu J, Shuster J, et al. Intestinal microbial ecology in premature infants assessed with non-culture-based techniques. J Pediatr. 2010; 156: 20–25.

  • 15

    Chu DM, Ma J, Prince AL, et al. Maturation of the infant microbiome community structure and function across multiple body sites and in relation to mode of delivery. Nat Med. 2017; 23: 314–326.

  • 16

    Jiménez E, Fernández L, Marín ML, et al. Isolation of commensal bacteria from umbilical cord blood of healthy neonates born by cesarean section. Curr Microbiol. 2005; 51: 270–274.

  • 17

    Dominguez-Bello MG, Costello EK, Contreras M, et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci USA 2010; 107: 11971–11975.

  • 18

    Del Chierico F, Vernocchi P, Petrucca A, et al. Phylogenetic and metabolic tracking of gut microbiota during perinatal development. PLoS ONE 2015; 10: e0137347.

  • 19

    Aagaard K, Ma J, Antony KM, et al. The placenta harbors a unique microbiome. Sci Transl Med. 2014; 6: 237ra65.

  • 20

    Stokholm J, Schjørring S, Eskildsen CE, et al. Antibiotic use during pregnancy alters the commensal vaginal microbiota. Clin Microbiol Infect. 2014; 20: 629–635.

  • 21

    Chen X, Li P, Liu M, et al. Gut dysbiosis induces the development of pre-eclampsia through bacterial translocation. Gut 2020; 69: 513–522.

  • 22

    Zijlmans MA, Korpela K, Riksen-Walraven JM, et al. Maternal prenatal stress is associated with the infant intestinal microbiota. Psychoneuroendocrinology 2015; 53: 233–245.

  • 23

    Brzozowski B, Mazur-Bialy A, Pajdo R. Mechanisms by which stress affects the experimental and clinical inflammatory bowel disease (IBD): role of brain-gut axis. Curr Neuropharmacol. 2016; 14: 892–900.

  • 24

    Kelsall B. Recent progress in understanding the phenotype and function of intestinal dendritic cells and macrophages. Mucosal Immunol. 2008; 1: 460–469.

  • 25

    Perez PF, Doré J, Leclerc M, et al. Bacterial imprinting of the neonatal immune system: lessons from maternal cells? Pediatrics 2007; 119: e724–7e32.

  • 26

    Gomez-Arango LF, Barrett HL, McIntyre HD, et al. Contributions of the maternal oral and gut microbiome to placental microbial colonization in overweight and obese pregnant women. Sci Rep. 2017; 7: 2860.

  • 27

    Walker RW, Clemente JC, Peter I, et al. The prenatal gut microbiome: are we colonized with bacteria in utero? Pediatr Obes. 2017; 12(Suppl 1): 3–17.

  • 28

    Kacerovsky M, Pliskova L, Bolehovska R, et al. The impact of the microbial load of genital mycoplasmas and gestational age on the intensity of intraamniotic inflammation. Am J Obstet Gynecol. 2012; 206: 342.e1–342.e8.

  • 29

    Kozyrskyj AL, Kalu R, Koleva PT, et al. Fetal programming of overweight through the microbiome: boys are disproportionately affected. J Dev Orig Health Dis. 2016; 7: 25–34.

  • 30

    Soderborg TK, Borengasser SJ, Barbour LA, et al. Microbial transmission from mothers with obesity or diabetes to infants: an innovative opportunity to interrupt a vicious cycle. Diabetologia 2016; 59: 895–906.

  • 31

    Gomez de Agüero M, Ganal-Vonarburg SC, Fuhrer T, et al. The maternal microbiota drives early postnatal innate immune development. Science 2016; 351: 1296–1302.

  • 32

    Ganal-Vonarburg SC, Fuhrer T, Gomez de Agüero M. Maternal microbiota and antibodies as advocates of neonatal health. Gut Microbes 2017; 8: 479–485.

  • 33

    Hu M, Eviston D, Hsu P, et al. Decreased maternal serum acetate and impaired fetal thymic and regulatory T cell development in preeclampsia. Nat Commun. 2019; 10: 3031.

  • 34

    Fülöp V. Immunological characteristics of the fetus and the newborn. In Fülöp V. (ed.) Current issues in immunology in human reproduction. [A magzat és az újszülött immunológiai jellemzői. In: Fülöp V. (szerk.) Az immunológia időszerű kérdései a humánreprodukcióban.] Semmelweis Kiadó, Budapest, 2008; pp. 93–100. [Hungarian]

  • 35

    Davis EC, Dinsmoor AM, Wang M, et al. Microbiome composition in pediatric populations from birth to adolescence: impact of diet and prebiotic and probiotic interventions. Dig Dis Sci. 2020; 65: 706–722.

  • 36

    Gibson GR, Hutkins R, Sanders ME. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat Rev Gastroenterol Hepatol. 2017; 14: 491–502.

  • 37

    Aguilar-Toalá, JE, García-Varela R, Garcia HS. Postbiotics: an evolving term within the functional foods field. Trends Food Sci Tech. 2018; 75: 105–114.

  • 38

    Adams CA. The probiotic paradox: live and dead cells are biological response modifiers. Nutr Res Rev. 2010; 23: 37–46.

  • 39

    Cho I, Yamanishi S, Cox L, et al. Antibiotics in early life alter the murine colonic microbiome and adiposity. Nature 2012; 488: 621–626.

  • 40

    Maier L, Pruteanu M, Kuhn M, et al. Extensive impact of non-antibiotic drugs on human gut bacteria. Nature 2018; 555: 623–628.

  • 41

    Kataria J, Li N, Wynn JL, et al. Probiotic microbes: do they need to be alive to be beneficial? Nutr Rev. 2009; 67: 546–550.

  • 42

    Agostoni C, Buonocore G, Carnielli VP. Enteral nutrient supply for preterm infants: commentary from the European Society of Paediatric Gastroenterology, Hepatology and Nutrition Committee on Nutrition. J Pediatr Gastroenterol Nutr. 2010; 50: 85–91.

  • 43

    Fujiwara R, Takemura N, Watanabe J, et al. Maternal consumption of fructo-oligosaccharide diminishes the severity of skin inflammation in offspring of NC/Nga mice. Br J Nutr. 2010; 103: 530–538.

  • 44

    Mesa MD, Loureiro B, Iglesia I, et al. The evolving microbiome from pregnancy to early infancy: a comprehensive review. Nutrients 2020; 12: 133.

  • 45

    Toor D, Wsson MK, Kumar P, et al. Dysbiosis disrupts gut immune homeostasis and promotes gastric diseases. Int J Mol Sci. 2019; 20: 2432.

  • 46

    Gluckman PD, Hanson MA, Mitchell MD. Developmental origins of health and disease: reducing the burden of chronic disease in the next generation. Genome Med. 2010; 2: 14.

  • 47

    Sandall J, Tribe RM, Avery L, et al. Short-term and long-term effects of caesarean section on the health of women and children. Lancet 2018; 392: 1349–1357.

  • 48

    Korpela K, de Vos WM. Early life colonization of the human gut: microbes matter everywhere. Curr Opin Microbiol. 2018; 44: 70–78.

  • 49

    Korpela K, Helve O, Kolho KL, et al. Maternal fecal microbiota transplantation in cesarean-born infants rapidly restores normal gut microbial development: a proof-of-concept study. Cell 2020; 183: 324–334.e5.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 105 105 36
PDF Downloads 132 132 57