Összefoglaló. Célunk, hogy közleményünkben összefoglaljuk a pachychorioidealis kórképekkel kapcsolatos ismereteket egy-egy saját esettel illusztrálva. Az irodalmi adatok és a saját klinikai tapasztalatok alapján összegeztük a pachychorioidealis kórképekkel kapcsolatos ismereteinket, az alcsoportok kezelési lehetőségeiről összefoglaló folyamatábrát készítettünk. A pachychorioidealis kórképekbe a következő betegségek tartoznak: centrális serosus chorioretinopathia (CSCR), pachychorioidealis pigmentepitheliopathia (PPE), pachychorioidealis neovasculopathia (PNV), polypoid chorioidealis vasculopathia (PCV), peripapillaris pachychorioidealis syndroma (PPS), focalis chorioideaexcavatio (FCE). A pachychorioidealis kórképek közös jellemzője a chorioidea kvantitatív vagy kvalitatív eltérései, melyekhez gyakran subretinalis folyadékgyülem társul. A betegségcsoportnak jelenleg nincs standard kezelési protokollja; a többféle kezelési mód közül néhány hatékonyabbnak bizonyul, az alcsoportok között azonban lényeges különbségek mutatkoznak. Összegezzük, hogy melyik alcsoportban érdemes eplerenonetablettás kezeléssel, mikropulzuslézer-kezeléssel, verteporfinos fotodinámiás kezeléssel (PDT) vagy intravitrealis anti-VEGF-injekciós kezeléssel kezdeni. Orv Hetil. 2020; 162(20): 770–781.
Summary. The aim of this study is to present our knowledge about pachychoroid diseases using case reports, literature review and our own clinical experiences. A summary flow chart of treatment options for the subgroups was prepared, too. Pachychoroid diseases include the following: central serous chorioretinopathy (CSCR), pachychoroid pigment epitheliopathy (PPE), pachychoroid neovasculopathy (PNV), polypoidal choroidal vasculopathy (PCV), peripapillary pachychoroid syndrome (PPS), focal choroidal excavation (FCE). A common feature of pachychoroid diseases is the quantitative or qualitative abnormality of the choroidea, which is often associated with subretinal fluid accumulation. The disease group does not currently have a standard treatment protocol; some of the multiple treatments prove to be more effective, however, there are significant differences between the subgroups. We summarize which subgroup benefits from eplerenone tablet therapy, micropulse laser therapy, verteporfin photodynamic therapy or intravitreal anti-VEGF injection therapy. Orv Hetil. 2020; 162(20): 770–781.
Stepanov A, Studnička J, Středová M, et al. Pachychoroid disease of the macula. Cesk Slov Oftalmol. 2018; 74: 3–8.
Cheung CM, Lee WK, Koizumi H, et al. Pachychoroid disease. Eye 2019; 33: 14–33.
Freund KB, Fine HF. Pachychoroid disease. Ophthalmic Surg Lasers Imaging Retina 2020; 51: 206–209.
Récsán Zs. Importance of choroidal thickness in eye diseases. [A chorioidea-vastagság jelentősége szemfenéki kórképekben.] Szemészet 2019; 156: 48–58. [Hungarian]
Kitzmann AS, Pulido JS, Diehl NN, et al. The incidence of central serous chorioretinopathy in Olmsted county, Minnesota, 1980–2002. Ophthalmology 2008; 115: 169–173.
Perkins SL, Kim JE, Pollack JS, et al. Clinical characteristics of central serous chorioretinopathy in women. Ophthalmology 2002; 109: 262–266.
Daruich A, Matet A, Dirani A, et al. Central serous chorioretinopathy: recent findings and new physiopathology hypothesis. Prog Retin Eye Res. 2015; 48: 82–118.
Carvalho-Recchia CA, Yannuzzi LA, Negrão S, et al. Corticosteroids and central serous chorioretinopathy. Ophthalmology 2002; 109: 1834–1837.
Wu CY, Riangwiwat T, Rattanawong P, et al. Association of obstructive sleep apnea with central serous chorioretinopathy and choroidal thickness: a systematic review and meta-analysis. Retina 2018; 38: 1642–1651.
Ecsedy M, Gergely R. Central serous chorioretinopathy. In: Récsán Zs, Nagy ZZs. (eds.) Optical coherence tomography in ophthalmology. [Chorioretinopathia centralis serosa OCT leképezése. In: Récsán Zs, Nagy ZZs. (szerk.) Optikai koherencia tomográfia a szemészetben.] Semmelweis Kiadó, Budapest, 2018; pp. 132–137. [Hungarian]
Maruko I, Iida T, Sugano Y, et al. Subfoveal choroidal thickness in fellow eyes of patients with central serous chorioretinopathy. Retina 2011; 31: 1603–1608.
Jirarattanasopa P, Ooto S, Tsujikawa A, et al. Assessment of macular choroidal thickness by optical coherence tomography and angiographic changes in central serous chorioretinopathy. Ophthalmology 2012; 119: 1666–1678.
Warrow DJ, Hoang QV, Freund KB. Pachychoroid pigment epitheliopathy. Retina 2013; 33: 1659–1672.
Sanchez-Cano A, Orduna E, Segura F, et al. Choroidal thickness and volume in healthy young white adults and the relationships between them and axial length, ammetropy and sex. Am J Ophthalmol. 2014; 158: 574–583.e1.
Pang CE, Freund KB. Pachychoroid pigment epitheliopathy may masquerade as acute retinal pigment epitheliitis. Invest Ophthalmol Vis Sci. 2014; 55: 5252.
Imamura Y, Engelbert M, Iida T, et al. Polypoidal choroidal vasculopathy: a review. Surv Ophthalmol. 2010; 55: 501–515.
Balaratnasingam C, Lee WK, Koizumi H, et al. Polypoidal choroidal vasculopathy: a distinct disease or manifestation of many? Retina 2016; 36: 1–8.
Sato T, Kishi S, Watanabe G, et al. Tomographic features of branching vascular networks in polypoidal choroidal vasculopathy. Retina 2007; 27: 589–594.
Nakashizuka H, Mitsumata M, Okisaka S, et al. Clinicopathologic findings in polypoidal choroidal vasculopathy. Invest Ophthalmol Vis Sci. 2008; 49: 4729–4737.
Prünte C, Flammer J. Choroidal capillary and venous congestion in central serous chorioretinopathy. Am J Ophthalmol. 1996; 121: 26–34.
Phasukkijwatana N, Freund KB, Dolz-Marco R, et al. Peripapillary pachychoroid syndrome. Retina 2018; 38: 1652–1667.
Pautler SE, Browning DJ. Isolated posterior uveal effusion: expanding the spectrum of the uveal effusion syndrome. Clin Ophthalmol. 2015; 9: 43–49.
Margolis R, Mukkamala SK, Jampol LM, et al. The expanded spectrum of focal choroidal excavation. Arch Ophthalmol. 2011; 129: 1320–1325.
Ecsedy M, Gergely R , Kovács I, et al. Central serous chorioretinopathy (CSCR). New diagnostic and therapeutic possibilities. [Centrális serosus chorioretinopathia (CSCR). Új diagnosztikus és terápiás lehetőségek.] Szemészet 2018; 155: 11–17. [Hungarian]
Gergely R, Kovács I, Schneider M, et al. Mineralocorticoid receptor antagonist treatment in bilateral chronic central serous chorioretinopathy: a comparative study of exudative and nonexudative fellow eyes. Retina 2017; 37: 1084–1091.
Bousquet E, Beydoun T, Zhao M, et al. Mineralocorticoid receptor antagonism in the treatment of chronic central serous chorioretinopathy: a pilot study. Retina 2013; 33: 2096–2102.
Zhao M, Valamanesh F, Celerier I, et al. The neuroretina is a novel mineralocorticoid target: aldosterone up-regulates ion and water channels in Müller glial cells. FASEB J. 2010; 24: 3405–3415.
Zhao M, Célérier I, Bousquet E, et al. Mineralocorticoid receptor is involved in rat and human ocular chorioretinopathy. J Clin Invest. 2012; 122: 2672–2679.
Ghadiali Q, Jung JJ, Yu S, et al. Central serous chorioretinopathy treated with mineralocorticoid antagonists: a one-year pilot study. Retina 2016; 36: 611–618.
Gergely R, Kovács I, Récsán Zs, et al. Predictive factors of selective mineralocorticoid receptor antagonist treatment in chronic central serous chorioretinopathy. Sci Rep. 2020; 10: 16621.
Park W, Kim M, Kim RY, et al. Comparing effects of photodynamic therapy in central serous chorioretinopathy: full-dose versus half-dose versus half-dose-half-fluence. Graefes Arch Clin Exp Ophthalmol. 2019; 257: 2155–2161.
Ma J, Meng N, Xu X, et al. System review and meta-analysis on photodynamic therapy in central serous chorioretinopathy. Acta Ophthalmol. 2014; 92: e594–e601.
Ntomoka CG, Rajesh B, Muriithi GM, et al. Comparison of photodynamic therapy and navigated microsecond laser for chronic central serous chorioretinopathy. Eye 2018; 32: 1079–1086.
Gergely R, Ecsedy M, Nagy ZZs. Navilas micropulse laser treatment of chronic central serous chorioretinopathy (CSCR). [Krónikus centrális serosus chorioretinopathia (CSCR) Navilas® mikropulzus lézerkezelése.] A Magyar Szemorvostársaság Retina Szekciójának Kongresszusa, Győr, 2019. [Hungarian]
van Rijssen TJ, van Dijk EH, Scholz P, et al. Focal and diffuse chronic central serous chorioretinopathy treated with half-dose photodynamic therapy or subthreshold micropulse laser: PLACE Trial Report No. 3. Am J Ophthalmol. 2019; 205: 1–10.
Roca JA, Wu L, Fromow-Guerra J, et al. Yellow (577 nm) micropulse laser versus half-dose verteporfin photodynamic therapy in eyes with chronic central serous chorioretinopathy: results of the Pan-American Collaborative Retina Study (PACORES) Group. Br J Ophthalmol. 2018; 102: 1696–1700.
Lim JW, Kim MU. The efficacy of intravitreal bevacizumab for idiopathic central serous chorioretinopathy. Graefes Arch Clin Exp Ophthalmol. 2011; 249: 969–974.
Shin MC, Lim JW. Concentration of cytokines in the aqueous humor of patients with central serous chorioretinopathy. Retina 2011; 31: 1937–1943.
Azuma K, Okubo A, Nomura Y, et al. Association between pachychoroid and long-term treatment outcomes of photodynamic therapy with intravitreal ranibizumab for polypoidal choroidal vasculopathy. Sci Rep. 2020; 10: 8337.
Kitajima Y, Maruyama-Inoue M, Ito A, et al. One-year outcome of combination therapy with intravitreal anti-vascular endothelial growth factor and photodynamic therapy in patients with pachychoroid neovasculopathy. Graefes Arch Clin Exp Ophthalmol. 2020; 258: 1279–1285.
Terao N, Koizumi H, Kojima K, et al. Distinct aqueous humour cytokine profiles of patients with pachychoroid neovasculopathy and neovascular age-related macular degeneration. Sci Rep. 2018; 8: 10520.
Koh A, Lee WK, Chen LJ, et al. EVEREST study: efficacy and safety of verteporfin photodynamic therapy in combination with ranibizumab or alone versus ranibizumab monotherapy in patients with symptomatic macular polypoidal choroidal vasculopathy. Retina 2012; 32: 1453–1464.
Koh A, Lai TY, Takahashi K, et al. Efficacy and safety of ranibizumab with or without verteporfin photodynamic therapy for polypoidal choroidal vasculopathy: a randomized clinical trial. JAMA Ophthalmol. 2017; 135: 1206–1213.
Miyamoto N, Mandai M, Oishi A, et al. Long-term results of photodynamic therapy or ranibizumab for polypoidal choroidal vasculopathy in LAPTOP study. Br J Ophthalmol. 2019; 103: 844–848.
Lee WK, Iida T, Ogura Y, et al. Efficacy and safety of intravitreal aflibercept for polypoidal choroidal vasculopathy in the PLANET study: a randomized clinical trial. JAMA Ophthalmol. 2018; 136: 786–793. [Erratum: JAMA Ophthalmol. 2018; 136: 840.]
Honda S, Miki A, Yanagisawa S, et al. Comparison of the outcomes of photodynamic therapy between two angiographic subtypes of polypoidal choroidal vasculopathy. Ophthalmologica 2014; 232: 92–96.
Gemmy Cheung CM, Yeo I, Li X, et al. Argon laser with and without anti-vascular endothelial growth factor therapy for extrafoveal polypoidal choroidal vasculopathy. Am J Ophthalmol. 2013; 155: 295–304.e1.
Cebeci Z, Bayraktar Ş, Oray M, et al. Focal choroidal excavation. Turk J Ophthalmol. 2016; 46: 296–298.
Kovács KD, Gonzalez LA, Weiss SJ, et al. Focal choroidal excavation expansion following treatment of associated choroidal neovascular membrane. Ophthalmic Surg Lasers Imaging Retina 2019; 51: 54–57.
Alonso-Martín B, de-Lucas-Viejo B, Gimeno-Carrero M, et al. Diagnosis by multimodal imaging in peripapillary pachychoroid syndrome: a case report. Arch Soc Esp Oftalmol. 2020; 95: 248–253.