View More View Less
  • 1 Debreceni Egyetem, Általános Orvostudományi Kar, Szülészeti és Nőgyógyászati Intézet, Debrecen, Nagyerdei krt. 98., 4032
  • | 2 Debreceni Egyetem, Laboratóriumi Medicina Intézet, Klinikai Laboratóriumi Kutató Tanszék, Debrecen
  • | 3 Dél-pesti Centrumkórház – Országos Hematológiai és Infektológiai Intézet, Budapest
Open access

Összefoglaló. Bevezetés: Bevezetés: A citológiai alapú méhnyakrákszűrés átmeneti kategóriáinak optimális menedzselése a humán papillomavírus (HPV) szűrése és tipizálása ellenére jelenleg is kihívás. Vizsgálatunk célja a modern cervixspektroszkópiának (multimodális hiperspektroszkópia – MHS), egy azonnali eredményt nyújtó, digitális technológiára épülő módszernek a vizsgálata volt a citológiai alapú méhnyakszűrés találati biztonságának javítására. Betegek és módszer: Vizsgálatainkat 208, 18 és 75 év közötti nőbeteg bevonásával végeztük, akiknél már indikálásra került valamely, a méhnyakon végzendő műtét, citológiai eredményük rendelkezésre állt (a HPV-tesztet, amennyiben nem történt meg, elvégeztük), valamint valamennyi betegnél elvégeztük a műtét előtt az MHS-vizsgálatot. A szövettani mintavétel 166 betegnél történt meg. Eredmények: A citológiai vizsgálatot (az összes betegre tekintve) magas álpozitív arány jellemezte (69,28%), amely megfigyelések mindenképpen utalnak az újabb komponens alkalmazásának igényére a triázsban. Az összes citológiai kategóriára nézve az MHS-eredmények közül kiemelendő az álnegatív leletek rendkívül alacsony aránya (3/166 = 1,8%), mely a HPV-teszt esetén ennél magasabb volt (11/165 = 6,66%). A spektroszkópiás vizsgálat álpozitív aránya ugyanakkor kedvezőtlenebbnek bizonyult (91/166 = 54,81%) a HPV-vizsgálat álpozitív arányánál (40/165 = 24,24%). Az atípusos laphámsejt (ASC-US/ASC-H) citológiai kategória esetén a spektroszkópia álnegatív eredményeinek aránya (3/126 = 2,38%) szintén kedvezőbb volt, mint a HPV-vizsgálaté (9/126 = 7,14%). A cervicalis intraepithelialis neoplasia-2 vagy súlyosabb fokozatú hámelváltozások azonosításában a spektroszkópia szenzitivitása 94% (95% CI = 0,84–0,99), specificitása 22% (95% CI = 0,15–0,31), negatív prediktív értéke 90% (95% CI = 0,73–0,98), pozitív prediktív értéke 34% (95% CI = 0,26–0,43) volt (p = 0,00130). Következtetés: Az MHS fejlett innovatív technológián alapuló, azonnali eredményt adó vizsgálóeljárás, amely kiemelkedően alacsony álnegatív eredménye miatt nagy segítséget nyújt a citológiai eltéréssel rendelkező betegek további vizsgálatában. Orv Hetil. 2021; 162(20): 790–799.

Summary. Introduction: Despite the use of human papillomavirus (HPV) testing, the management of the transitional categories of cytology-based screening still remains a challenge. The modern multimodal hyperspectroscopy (MHS) of the cervix is a novel digital technology based on artificial intelligence, providing an instant result in the assessment of cytology-based screening abnormalities. Patients and methods: 208 women (age 18–75) were enrolled. The patients already had cytology results and an operation on the cervix indicated at the time of inclusion. HPV and the hyperspectroscopy examination was performed pre-operatively. The pre-indicated operation was performed on 166 patients. Results: Cytology-based screening alone (in the category of all patients) resulted in a high false-positive rate (69.28%). In this category, the MHS had an outstanding false-negative rate (3/166 = 1.80%) compared to the HPV (11/165 = 6.66%). The false-positive rate of the spectroscopy examination (91/166 = 54.81%) was higher than that of the HPV testing (40/165 = 24.24%). In the atypical squamous cell (ASC-US/ASC-H) category, the false-negative rate of the spectroscopy (3/126 = 2.38%) was also lower than that of the HPV test (9/126 = 7.14%). In the detection of high-grade abnormalities (cervical intraepithelial neoplasia 2 and worse), the spectroscopy had a 94% sensitivity (95% CI = 0.84–0.99), with a 22% specificity (95% CI = 0.15–0.31), an 90% negative predictive value (95% CI = 0.73–0.98), and a 34% positive predictive value (95% CI = 0.26–0.43) (p = 0.00130). Conclusion: In the case of cytological abnormality, the MHS provides an immediate result based on advanced digital technology, and because of its outstanding false negative rate it is a great aid and should be considered in the triage of such patients. Orv Hetil. 2021; 162(20): 790–799.

  • 1

    Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018; 68: 394–424. [Erratum: CA Cancer J Clin. 2020; 70: 313.]

  • 2

    Torre LA, Siegel RL, Ward EM, et al. Global cancer incidence and mortality rates and trends – an update. Cancer Epidemiol Biomarkers Prev. 2016; 25: 16–27.

  • 3

    Solomon D, Davey D, Kurman R, et al. The 2001 Bethesda system: terminology for reporting results of cervical cytology. JAMA 2002; 287: 2114–2119.

  • 4

    Kulasingam SL, Hughes JP, Kiviat NB, et al. Evaluation of human papillomavirus testing in primary screening for cervical abnormalities: comparison of sensitivity, specificity, and frequency of referral. JAMA 2002; 288: 1749–1757.

  • 5

    Walboomers JM, Jacobs MV, Manos MM, et al. Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J Pathol. 1999; 189: 12–19.

  • 6

    Schiffman M, Solomon D. Clinical practice. Cervical-cancer screening with human papillomavirus and cytologic cotesting. N Engl J Med. 2013; 369: 2324–2331.

  • 7

    Schiffman M, Wentzensen N, Wacholder S, et al. Human papillomavirus testing in the prevention of cervical cancer. J Natl Cancer Inst. 2011; 103: 368–383.

  • 8

    Saslow D, Solomon D, Lawson HW, et al. American Cancer Society, American Society for Colposcopy and Cervical Pathology, and American Society for Clinical Pathology screening guidelines for the prevention and early detection of cervical cancer. CA Cancer J Clin. 2012; 62: 147–172.

  • 9

    ASCUS-LSIL Triage Study (ALTS) Group. Results of a randomized trial on the management of cytology interpretations of atypical squamous cells of undetermined significance. Am J Obstet Gynecol. 2003; 188: 1383–1392.

  • 10

    Wright TC Jr, Stoler MH, Behrens CM, et al. The ATHENA human papillomavirus study: design, methods, and baseline results. Am J Obstet Gynecol. 2012; 206: 46.e1–46.e11.

  • 11

    Alvarez RD, Wright TC Jr. Increased detection of high-grade cervical intraepithelial neoplasia utilizing an optical detection system as an adjunct to colposcopy. Gynecol Oncol. 2007; 106: 23–28.

  • 12

    Wade R, Spackman E, Corbett M, et al. Adjunctive colposcopy technologies for examination of the uterine cervix – DySIS, LuViva Advanced Cervical Scan and Niris Imaging System: a systematic review and economic evaluation. Health Technol Assess. 2013; 17: 1–240, v–vi.

  • 13

    Koiss R, Boncz I, Hernádi Z, et al. Proposal for the modernization of cervical screening procedure in Hungary. [Javaslat a hazai méhnyakszűrési eljárásrend korszerűsítésére.] Orv Hetil. 2017; 158: 2062–2067. [Hungarian]

  • 14

    Massad LS, Collins YC. Strength of correlations between colposcopic impression and biopsy histology. Gynecol Oncol. 2003; 89: 424–428.

  • 15

    Kovács A, Döbrőssy L, Budai A, et al. The state of organized cervical screening program in Hungary in 2006. [A népegészségügyi méhnyakszűrés helyzete Magyarországon 2006-ban.] Orv Hetil. 2007; 148: 535–540. [Hungarian]

  • 16

    Papp Z. (ed.) The handbook of gynecology. [A nőgyógyászat kézikönyve.] Medicina Könyvkiadó, Budapest, 2016. [Hungarian]

  • 17

    Hernádi Z. Gynecological oncology. [Nőgyógyászati onkológia.] Therapia Kiadó, Budapest, 2004. [Hungarian]

  • 18

    Guo P, Xue Z, Mtema Z, et al. Ensemble deep learning for cervix image selection toward improving reliability in automated cervical precancer screening. Diagnostics (Basel) 2020; 10: 451.

  • 19

    Castle PE, Stoler MH, Wright TC Jr, et al. Performance of carcinogenic human papillomavirus (HPV) testing and HPV16 or HPV18 genotyping for cervical cancer screening of women aged 25 years and older: a subanalysis of the ATHENA study. Lancet Oncol. 2011; 12: 880–890.

  • 20

    Cox JT, Castle PE, Behrens CM, et al. Comparison of cervical cancer screening strategies incorporating different combinations of cytology, HPV testing, and genotyping for HPV 16/18: results from the ATHENA HPV study. Am J Obstet Gynecol. 2013; 208: 184.e1–184.e11.

  • 21

    Cothren RM, Richards-Kortum R, Sivak MV Jr, et al. Gastrointestinal tissue diagnosis by laser-induced fluorescence spectroscopy at endoscopy. Gastrointest Endosc. 1990; 36: 105–111.

  • 22

    DeSantis T, Chakhtoura N, Twiggs L, et al. Spectroscopic imaging as a triage test for cervical disease: a prospective multicenter clinical trial. J Low Genit Tract Dis. 2007; 11: 18–24.

  • 23

    Ferris DG, Lawhead RA, Dickman ED, et al. Multimodal hyperspectral imaging for the noninvasive diagnosis of cervical neoplasia. J Low Genit Tract Dis. 2001; 5: 65–72.

  • 24

    Drezek R, Brookner C, Pavlova I, et al. Autofluorescence microscopy of fresh cervical-tissue sections reveals alterations in tissue biochemistry with dysplasia. Photochem Photobiol. 2001; 73: 636–641.

  • 25

    Yamal JM, Zewdie GA, Cox DD, et al. Accuracy of optical spectroscopy for the detection of cervical intraepithelial neoplasia without colposcopic tissue information; a step toward automation for low resource settings. J Biomed Opt. 2012; 17: 047002.

  • 26

    Ebisch RM, Hermens M, van den Akker PA, et al. Multimodal hyperspectroscopic imaging for detection of high-grade cervical intraepithelial neoplasia. J Low Genit Tract Dis. 2017; 21: 166–170.

  • 27

    Drezek R, Sokolov K, Utzinger U, et al. Understanding the contributions of NADH and collagen to cervical tissue fluorescence spectra: modeling, measurements, and implications. J Biomed Opt. 2001; 6: 385–396.

  • 28

    Freeberg JA, Serachitopol DM, McKinnon N, et al. Fluorescence and reflectance device variability throughout the progression of a phase II clinical trial to detect and screen for cervical neoplasia using a fiber optic probe. J Biomed Opt. 2007; 12: 034015.

  • 29

    Mourant JR, Marina OC, Hebert TM, et al. Hemoglobin parameters from diffuse reflectance data. J Biomed Opt. 2014; 19: 037004.

  • 30

    Twiggs LB, Chakhtoura NA, Ferris DG, et al. Multimodal hyperspectroscopy as a triage test for cervical neoplasia: pivotal clinical trial results. Gynecol Oncol. 2013; 130: 147–151.

  • 31

    Ferris DG, Litaker MS, Dickman ED, et al. Women’s responses to cervical interrogation by fluorescent and reflective spectroscopy. J Low Genit Tract Dis. 2003; 7: 299–303.

  • 32

    Werner CL, Griffith WF 3rd, Ashfaq R, et al. Comparison of human papilloma virus testing and spectroscopy combined with cervical cytology for the detection of high-grade cervical neoplasia. J Low Genit Tract Dis. 2007; 11: 73–79.

  • 33

    Pandey K, Pradhan A, Agarwal A, et al. Fluorescence spectroscopy: a new approach in cervical cancer. J Obstet Gynaecol India 2012; 62: 432–436.

  • 34

    Massad LS, Einstein MH, Huh WK, et al. 2012 updated consensus guidelines for the management of abnormal cervical cancer screening tests and cancer precursors. Obstet Gynecol. 2013; 121: 829–846.

  • 35

    Discacciati MG, Gimenes F, Pennacchi PC, et al. MMP-9/RECK imbalance: a mechanism associated with high-grade cervical lesions and genital infection by human papillomavirus and Chlamydia trachomatis. Cancer Epidemiol Biomarkers Prev. 2015; 24: 1539–1547.

  • 36

    Boccardo E, Lepique AP, Villa LL. The role of inflammation in HPV carcinogenesis. Carcinogenesis 2010; 31: 1905–1912.

  • 37

    Raab SS, Zaleski MS, Silverman JF. The cost-effectiveness of the cytology laboratory and new cytology technologies in cervical cancer prevention. Am J Clin Pathol. 1999; 111: 259–266.

  • 38

    Karimi-Zarchi M, Peighmbari F, Karimi N, et al. A comparison of 3 ways of conventional Pap smear, liquid-based cytology and colposcopy vs cervical biopsy for early diagnosis of premalignant lesions or cervical cancer in women with abnormal conventional Pap test. Int J Biomed Sci. 2013; 9: 205–210.

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jan 2021 0 0 0
Feb 2021 0 0 0
Mar 2021 0 0 0
Apr 2021 0 0 0
May 2021 0 50 51
Jun 2021 0 15 19
Jul 2021 0 0 0