Összefoglaló. A posztakut COVID–19 szindróma (PACS) az akut betegséget követő 4–12 hét szubakut, tünetes szakasznak, valamint az ezt követő krónikus poszt-COVID-időszaknak az együttesét jelenti. A PACS különböző általános tünetekkel és szervi (pulmonalis, cardiovascularis, neuropszichiátriai, endokrin, mozgásszervi, bőrgyógyászati, renalis) manifesztációkkal jár. Ebben az összefoglalóban áttekintjük a PACS kialakulásához vezető patogenetikai és rizikótényezőket. Bemutatjuk a klinikumot és a diagnosztikát. A PACS ellátása alapvetően háziorvosi feladat, mely a szervi tünetek gyógyszeres és nem gyógyszeres kezeléséből, multidiszciplináris rehabilitációból és gondozásból áll. Kitérünk a háziorvos feladataira, a szakellátásba történő beutalás indokaira és a poszt-COVID-hálózat létrehozásának és működtetésének szükségességére is. Orv Hetil. 2021; 162(27): 1067–1078.
Summary. Post-acute COVID-19 syndrome (PACS) includes the subacute, symptomatic phase 4–12 weeks after acute COVID-19 as well as the subsequent chronic post-COVID-19 period. PACS is associated with various general symptoms and organ (pulmonary, cardiovascular, neuropsychiatric, endocrine, musculoskeletal, dermatological, renal) manifestations. In this summary, we review the pathogenetic and risk factors leading to the development of PACS. We present the clinical picture and diagnostics. PACS should usually be managed by the general practitioner. The management of PACS includes pharmacological and non-pharmacological treatment, multidisciplinary rehabilitation and regular follow-ups. Here we also discuss the tasks of the general practitioner, the reasons for referral to specialists and the need to set up and operate a post-COVID-19 network. Orv Hetil. 2021; 162(27): 1067–1078.
Salehi S, Abedi A, Balakrishnan S, et al. Coronavirus disease 2019 (COVID-19): a systematic review of imaging findings in 919 patients. Am J Roentgenol. 2020; 215: 87–93.
Marshall M. The lasting misery of coronavirus long-haulers. Nature 2020; 585: 339–341.
Nalbandian A, Sehgal K, Gupta A, et al. Post-acute COVID-19 syndrome. Nat Med. 2021; 27: 601–615.
Shah W, Hillman T, Playford ED, et al. Managing the long term effects of covid-19: summary of NICE, SIGN, and RCGP rapid guideline. BMJ 2021; 372: n136.
Bogos K, Temesi G, Kerpel-Fronius A, et al. Protocol for patients affected by post-acut COVID-19 syndrome. [A COVID-19 vírusfertőzésen átesett – és visszamaradó károsodásokat szenvedő – POSZT-COVID SZINDRÓMÁS betegek gondozási protokollja.] Országos Korányi Pulmonológiai Intézet, Gottsegen György Országos Kardiovaszkuláris Intézet, Országos Klinikai Idegtudományi Intézet, Budapest, 2021. Available from: https://tudogyogyasz.hu/Media/Download/30445 [accessed: May 3, 2021]. [Hungarian]
Greenhalgh T, Knight M, A’Court C, et al. Management of post-acute covid-19 in primary care. BMJ 2020; 370: m3026.
Szekanecz Z, Bálint P, Balog A, et al. Immunologic and rheumatologic aspects of COVID-19. [A COVID-19 fertőzés immunológiai és reumatológiai vonatkozásai.] Immunol Szle. 2020; 12(2): 5–17. [Hungarian]
Szekanecz Z, Bálint P, Balog A, et al. COVID-19: cytokine storm and beyond. [COVID-19: a citokinviharon innen és túl ...] Immunol Szle. 2020; 12(4): 5–15. [Hungarian]
Bhaskar S, Sinha A, Banach M, et al. Cytokine storm in COVID-19 – immunopathological mechanisms, clinical considerations, and therapeutic approaches: the REPROGRAM Consortium Position Paper. Front Immunol. 2020; 11: 1648.
Garvin MR, Alvarez C, Miller JI, et al. A mechanistic model and therapeutic interventions for COVID-19 involving a RAS-mediated bradykinin storm. eLife 2020; 9: e59177.
Ackermann M, Verleden SE, Kuehnel M, et al. Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in Covid-19. N Engl J Med. 2020; 383: 120–128.
Merrill JT, Erkan D, Winakur J, et al. Emerging evidence of a COVID-19 thrombotic syndrome has treatment implications. Nat Rev Rheumatol. 2020; 16: 581–589.
Lee MH, Perl DP, Nair G, et al. Microvascular injury in the brains of patients with Covid-19. N Engl J Med. 2021; 384: 481–483.
Sinkovits G, Mező B, Réti M, et al. Complement overactivation and consumption predicts in-hospital mortality in SARS-CoV-2 infection. Front Immunol. 2021; 12: 663187.
Mudd PA, Crawford JC, Turner JS, et al. Distinct inflammatory profiles distinguish COVID-19 from influenza with limited contributions from cytokine storm. Sci Adv. 2020; 6: eabe3024.
Webb BJ, Peltan ID, Jensen P, et al. Clinical criteria for COVID-19-associated hyperinflammatory syndrome: a cohort study. Lancet Rheumatol. 2020; 2: e754–e763.
Szekanecz Z, Bogos K, Constantin T, et al. Antiviral and anti-inflammatory therapies in COVID–19. [Antivirális és gyulladásellenes kezelési lehetőségek COVID–19-ben.] Orv Hetil. 2021; 162: 643–651. [Hungarian]
van Kampen JJ, van de Vijver DA, Fraaij PL, et al. Duration and key determinants of infectious virus shedding in hospitalized patients with coronavirus disease-2019 (COVID-19). Nat Commun. 2021; 12: 267.
Pandharipande PP, Girard TD, Jackson JC, et al. Long-term cognitive impairment after critical illness. N Engl J Med. 2013; 369: 1306–1316.
Inoue S, Hatakeyama J, Kondo Y, et al. Post-intensive care syndrome: its pathophysiology, prevention, and future directions. Acute Med Surg. 2019; 6: 233–246.
Chopra V, Flanders SA, O’Malley M, et al. Sixty-day outcomes among patients hospitalized with COVID-19. Ann Intern Med. 2021; 174: 576–578.
Carfi A, Bernabei R, Landi F, et al. Persistent symptoms in patients after acute COVID-19. JAMA 2020; 324: 603–605.
Arnold DT, Hamilton FW, Milne A, et al. Patient outcomes after hospitalisation with COVID-19 and implications for follow-up: results from a prospective UK cohort. Thorax 2021; 76: 399–401.
Moreno-Pérez O, Merino E, Leon-Ramirez JM, et al. Post-acute COVID-19 syndrome. Incidence and risk factors: a Mediterranean cohort study. J Infect. 2021; 82: 378–383.
Jacobs LG, Gourna Paleoudis E, Lesky-Di Bari D, et al. Persistence of symptoms and quality of life at 35 days after hospitalization for COVID-19 infection. PLoS ONE 2020; 15: e0243882.
Garrigues E, Janvier P, Kherabi Y, et al. Post-discharge persistent symptoms and health-related quality of life after hospitalization for COVID-19. J Infect. 2020; 81: e4–e6.
Huang C, Huang L, Wang Y, et al. 6-month consequences of COVID-19 in patients discharged from hospital: a cohort study. Lancet 2021; 397: 220–232.
Torjesen I. Covid-19: Middle aged women face greater risk of debilitating long term symptoms. BMJ 2021; 372: n829.
McElvaney OJ, McEvoy NL, McElvaney OF, et al. Characterization of the inflammatory response to severe COVID-19 illness. Am J Respir Crit Care Med. 2020; 202: 812–821.
Hendaus MA, Jomha FA. Covid-19 induced superimposed bacterial infection. J Biomol Struct Dyn. 2020; 2020: 1–7. .
Méndez R, Latorre A, González-Jimenez P, et al. Reduced diffusion capacity in COVID-19 survivors. Ann Am Thor Soc. 2021 Jan 20. . [Online ahead of print]
Martin-Villares C, Perez Molina-Ramirez C, Bartolome-Benito M, et al. Outcome of 1890 tracheostomies for critical COVID-19 patients: a national cohort study in Spain. Eur Arch Otorhinolaryngol. 2021; 278: 1605–1612.
Gupta A, Madhavan MV, Sehgal K, et al. Extrapulmonary manifestations of COVID-19. Nat Med. 2020; 26: 1017–1032.
Xiong TY, Redwood S, Prendergast B, et al. Coronaviruses and the cardiovascular system: acute and long-term implications. Eur Heart J. 2020; 41: 1798–1800.
Lindner D, Fitzek A, Bräuninger H, et al. Association of cardiac infection with SARS-CoV-2 in confirmed COVID-19 autopsy cases. JAMA Cardiol. 2020; 5: 1281–1285.
Lazzerini PE, Capecchi PL, Laghi-Pasini F, et al. Autoimmune channelopathies as a novel mechanism in cardiac arrhythmias. Nat Rev Cardiol. 2017; 14: 521–535.
Puntmann VO, Carerj ML, Wieters I, et al. Outcomes of cardiovascular magnetic resonance imaging in patients recently recovered from coronavirus disease 2019 (COVID-19). JAMA Cardiol. 2020; 5: 1265–1273.
Desforges M, Le Coupanec A, Stodola JK, et al. Human coronaviruses: viral and cellular factors involved in neuroinvasiveness and neuropathogenesis. Virus Res. 2014; 194: 145–158.
Perrin R, Riste L, Hann M, et al. Into the looking glass: post-viral syndrome post COVID-19. Med Hypotheses 2020; 144: 110055.
Morbini P, Benazzo M, Verga L, et al. Ultrastructural evidence of direct viral damage to the olfactory complex in patients testing positive for SARS-CoV-2. JAMA Otolaryngol Head Neck Surg. 2020; 146: 972–973.
Kaseda ET, Levine AJ. Post-traumatic stress disorder: a differential diagnostic consideration for COVID-19 survivors. Clin Neuropsychol. 2020; 34: 1498–1514.
Taquet M, Geddes JR, Husain M, et al. 6-month neurological and psychiatric outcomes in 236 379 survivors of COVID-19: a retrospective cohort study using electronic health records. Lancet Psychiatry 2021; 8: 416–427.
Ritchie K, Chan D, Watermeyer T. The cognitive consequences of the COVID-19 epidemic: collateral damage? Brain Commun. 2020; 2: fcaa069.
Mazza MG, De Lorenzo R, Conte C, et al. Anxiety and depression in COVID-19 survivors: role of inflammatory and clinical predictors. Brain Behav Immun. 2020; 89: 594–600.
Taquet M, Luciano S, Geddes JR, et al. Bidirectional associations between COVID-19 and psychiatric disorder: retrospective cohort studies of 62 354 COVID-19 cases in the USA. Lancet Psychiatry 2021; 8(2): 130–140. [Published online 2020 Nov 9.] [Erratum: Lancet Psychiatry 2021; 8(1): 1–86.e1.]
Ellul MA, Benjamin L, Singh B, et al. Neurological associations of COVID-19. Lancet Neurol. 2020; 19: 767–783.
Wu Y, Guo C, Tang L, et al. Prolonged presence of SARS-CoV-2 viral RNA in faecal samples. Lancet Gastroenterol Hepatol. 2020; 5: 434–435.
Donati Zeppa S, Agostini D, Piccoli G, et al. Gut microbiota status in COVID-19: an unrecognized player? Front Cell Infect Microbiol. 2020; 10: 576551.
Su H, Yang M, Wan C, et al. Renal histopathological analysis of 26 postmortem findings of patients with COVID-19 in China. Kidney Int. 2020; 98: 219–227.
Velez JC, Caza T, Larsen CP. COVAN is the new HIVAN: the re-emergence of collapsing glomerulopathy with COVID-19. Nat Rev Nephrol. 2020; 16: 565–567.
Jhaveri KD, Meir LR, Flores Chang BS, et al. Thrombotic microangiopathy in a patient with COVID-19. Kidney Int. 2020; 98: 509–512.
Gentile S, Strollo F, Mambro A, et al. COVID-19, ketoacidosis and new-onset diabetes: are there possible cause and effect relationships among them? Diabetes Obes Metab. 2020; 22: 2507–2508.
Salvio G, Gianfelice C, Firmani F, et al. Bone metabolism in SARS-CoV-2 disease: possible osteoimmunology and gender implications. Clin Rev Bone Miner Metab. 2020 Sep 1. . [Epub ahead of print]
Brancatella A, Ricci D, Viola N, et al. Subacute thyroiditis after SARS-CoV-2 infection. J Clin Endocrinol Metab. 2020; 105: 2367–2370.
Tee LY, Harjanto S, Rosario BH. COVID-19 complicated by Hashimoto’s thyroiditis. Singapore Med J. 2020 Jul 16. . [Epub ahead of print]
Patell R, Bogue T, Koshy A, et al. Postdischarge thrombosis and hemorrhage in patients with COVID-19. Blood 2020; 136: 1342–1346.
George PM, Barratt SL, Condliffe R, et al. Respiratory follow-up of patients with COVID-19 pneumonia. Thorax 2020; 75: 1009–1016.
Myall KJ, Mukherjee B, Castanheira AM, et al. Persistent post-COVID-19 interstitial lung disease: an observational study of corticosteroid treatment. Ann Am Thorac Soc. 2021; 18: 799–806.
George PM, Wells AU, Jenkins RG. Pulmonary fibrosis and COVID-19: the potential role for antifibrotic therapy. Lancet Respir Med. 2020; 8: 807–815.
Maron BJ, Zipes DP, Kovacs RJ. Eligibility and disqualification recommendations for competitive athletes with cardiovascular abnormalities: preamble, principles, and general considerations: a scientific statement from the American Heart Association and American College of Cardiology. J Am Coll Cardiol. 2015; 66: 2343–2349.
Rey JR, Caro-Codón J, Rosillo SO, et al. Heart failure in COVID-19 patients: prevalence, incidence and prognostic implications. Eur J Heart Fail. 2020; 22: 2205–2215.
Do TP, Remmers A, Schytz HW, et al. Red and orange flags for secondary headaches in clinical practice: SNNOOP10 list. Neurology 2019; 92: 134–144.
Ruggeri RM, Campenni A, Siracusa M, et al. Subacute thyroiditis in a patient infected with SARS-COV-2: an endocrine complication linked to the COVID-19 pandemic. Hormones (Athens) 2021; 20: 219–221.
Bikdeli B, Madhavan MV, Jimenez D, et al. COVID-19 and thrombotic or thromboembolic disease: implications for prevention, antithrombotic therapy, and follow-up. JACC state-of-the-art review. J Am Coll Cardiol. 2020; 75: 2950–2973.
Homerton University Hospital. Post COVID-19 patient information pack. Helping you to recover and manage your symptoms following COVID-19. May 2020. Available from: https://www.hackneycitizen.co.uk/wp-content/uploads/Post-COVID-19-information-pack-5.pdf [accessed: May 3, 2021].
Barker-Davies RM, O’Sullivan O, Senaratne KP, et al. The Stanford Hall consensus statement for post-COVID-19 rehabilitation. Br J Sports Med. 2020; 54: 949–959.
World Health Organization. Mental health and psychosocial considerations during the COVID-19 outbreak. 18 March 2020. Available from: https://www.who.int/docs/default-source/coronaviruse/mental-health-considerations.pdf [accessed: May 3, 2021].
Kardeş S. Spa therapy (balneotherapy) for rehabilitation of survivors of COVID-19 with persistent symptoms. Med Hypotheses 2021; 146: 110472.
Wang L, He W, Yu X, et al. Coronavirus disease 2019 in elderly patients: characteristics and prognostic factors based on 4-week follow-up. J Infect. 2020; 80: 639–645.
Post-COVID Special Outpatient Network. [Post-COVID Szakambulancia Hálózat.] 3 May, 2021. Available from: https://klinikaikozpont.unideb.hu/hu/poszt-covid-szakambulancia-halozat-alaptevekenyseg-bemutatasa [accessed: May 3, 2021].