Összefoglaló. A krónikus myeloid leukaemia ritka, klonális őssejt eredetű betegség. A myeloid sejtsor kóros működését a 9-es és 22-es kromoszómák reciprok transzlokációja következtében kialakuló fúziós gén (BCR/ABL1) által kódolt patológiás (fokozott) aktivitású tirozin-kináz jelátviteli fehérje okozza. A tartós, gyakran élethosszig tartó BCR/ABL1 specifikus tirozin-kináz-gátló (TKI-) kezelés a betegek jelentős hányadában az egészséges populáció túlélését elérő teljes gyógyulást biztosít, melyhez folyamatos, a mindenkori szakmai ajánlásoknak megfelelő onkohematológiai ellenőrzés szükséges. Az igen hatékony TKI-kezelés mellett azonban nemkívánatos mellékhatások jelentkezhetnek, melyek – számos szervrendszert érintve – a krónikus myeloid leukaemiás beteg kezelését multidiszciplináris együttműködéssé szélesítik ki. Jelenleg Magyarországon ötféle TKI érhető el, melyek mellékhatásprofilja igen eltérő. A kezelés elindításakor, illetve terápiamódosítás esetén beteg- és kórképspecifikus szempontokat mérlegelve kell kiválasztani az adott TKI-kezelést. Tekintettel a tartós kezelés mellett elérhető kiváló túlélési eredményekre, egyre gyakoribb azoknak a krónikus myeloid leukaemiás betegeknek a száma, akiknél változó súlyosságú nemkívánatos mellékhatások jelentkeznek, melyek miatt a betegek sokszor nem a hematológus szakorvosnál jelentkeznek. A leggyakrabban észlelt szövődmények ismertetését saját beteganyagunk részletes elemzése kapcsán a mindennapi klinikai gyakorlatban is bemutatjuk. Igen fontos, hogy a társszakmák (háziorvos, belgyógyász, kardiológus, angiológus, diabetológus, tüdőgyógyász, gasztroenterológus stb.) gyakorlói is tisztában legyenek az adott TKI-kezelés lehetséges mellékhatásaival, azok megelőzésével, időben történő felismerésével és hatékony kezelésével. Szakmai közreműködésük révén így segíthetik a klinikai hematológust a megfelelő terápia megtervezésében, valamint a betegek folyamatos kezelése kapcsán gyakran szükségessé váló szakmaspecifikus gondozásában is. Orv Hetil. 2021; 162(30): 1198–1207.
Summary. Chronic myeloid leukemia is a rare clonal stem cell disorder. The pathological overproduction of the myeloid cell line is caused by abnormal function of a tyrosine kinase encoded by a fusion gene (BCR/ABL1) which is formed upon a reciprocal translocation of chromosomes 9 and 22. Long-term, often lifelong treatment with BCR/ABL1-specific tyrosine kinase inhibitors provides excellent disease control and overall survival rates close to the general survival of a healthy population in a significant proportion of patients. These patients require continuous oncohematological monitoring in accordance with the current diagnostic and treatment guidelines. However, undesirable side effects may occur that extend the treatment of the patients to a multidisciplinary approach involving a number of nonhematological specialities. Currently, five types of tyrosine kinase inhibitors are available in Hungary, with very different side effect profiles. At the start of treatment or in the event of a change in therapy, patient- and leukemia-specific assessments should be taken to select the most proper tyrosine kinase inhibitors treatment. Given the excellent survival outcomes achieved with long-term tyrosine kinase inhibitor treatment, there is an increasing number of patients who might experience adverse events of different kind or severity, which often results in patients ending up in different, nonhematological medical situations. The description of the most frequently observed complications in connection with a detailed cross-sectional analysis of our own patient cohort is also presented here resembling everyday clinical practice. It is very important that practitioners of other medical professions (general practitioner, internist, cardiologist, angiologist, diabetologist, pulmonologist, gastroenterologist, etc.) should be aware of the possible side effects of specific tyrosine kinase inhibitor therapies. They can help to assist the clinical hematologist in planning the appropriate tyrosine kinase inhibitor therapy as well as in professional caretaking of these patients. Orv Hetil. 2021; 162(30): 1198–1207.
Rowley JD. New consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature 1973; 243: 290–293.
Druker BJ, Tamura S, Buchdunger E, et al. Effects of a selective inhibitor of the Ab1 tyrosine kinase on the growth of Bcr-Ab1 positive cells. Nat Med. 1996; 2: 561–566.
Pfirrmann M, Baccarani M, Saussele S, et al. Prognosis of long-term survival considering disease-specific death in patients with chronic myeloid leukemia. Leukemia 2016; 30: 48–56.
Hochhaus A, Baccarani M, Silver RT, et al. European LeukemiaNet 2020 recommendations for treating chronic myeloid leukaemia. Leukemia 2020; 34: 966–984.
Hehlmann R, Lauseker M, Saußele S, et al. Assessment of imatinib as first-line treatment of chronic myeloid leukemia: 10-year survival results of the randomized CML study IV and impact of non-CML determinants. Leukemia 2017; 31: 2398–2406.
Kantarjian HM, Shah NP, Cortes JE, et al. Dasatinib or imatinib in newly diagnosed chronic-phase chronic myeloid leukemia: 2-year follow-up from a randomized phase 3 trial (DASISION). Blood 2012; 119: 1123–1129.
Hochhaus A, Saglio G, Hughes TP, et al. Long-term benefits and risks of frontline nilotinib vs imatinib for chronic myeloid leukemia in chronic phase: 5-year update of the randomized ENESTnd trial. Leukemia 2016; 30: 1044–1154.
Brümmendorf TH, Cortes JE, de Souza CA, et al. Bosutinib versus imatinib in newly diagnosed chronic-phase chronic myeloid leukaemia: results from the 24-month follow-up of the BELA trial. Br J Haematol. 2015; 168: 69–81.
Druker BJ, Guilhot F, O’Brien SG, et al. Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia. N Engl J Med. 2006; 355: 2408–2417.
Cortes JE, Kim DW, Pinilla-Ibarz J, et al. A phase 2 trial of ponatinib in Philadelphia chromosome-positive leukemias. N Engl J Med. 2013; 369: 1783–1796.
Cortes JE, Kim DW, Pinilla-Ibarz J, et al. Ponatinib efficacy and safety in Philadelphia chromosome-positive leukemia: final 5-year results of the phase 2 PACE trial. Blood 2018; 132: 393–404.
Demeter J, Poros A, Bödör Cs, et al. Chronic myelogenous leukemia: diagnosis and treatment. [A krónikus myeloid leukaemia korszerű diagnosztikája és kezelése.] Orv Hetil. 2016; 157: 1459–1468. [Hungarian]
Steegmann JL, Baccarani M, Breccia M, et al. European LeukemiaNet recommendations for the management and avoidance of adverse events of treatment in chronic myeloid leukaemia. Leukemia 2016; 30: 1648–1671.
Caocci G, Mulas O, Annunziata M, et al. Long-term mortality rate for cardiovascular disease in 656 chronic myeloid leukaemia patients treated with second- and third-generation tyrosine kinase inhibitors. Int J Cardiol. 2020; 301: 163–166.
Haguet H, Douxfils J, Mullier F, et al. Risk of arterial and venous occlusive events in chronic myeloid leukemia patients treated with new generation BCR-ABL tyrosine kinase inhibitors: a systematic review and meta-analysis. Expert Opin Drug Saf. 2017; 16: 5–12.
Dahlén T, Edgren G, Lambe M, et al. Cardiovascular events associated with use of tyrosine kinase inhibitors in chronic myeloid leukemia: a population-based cohort study. Ann Intern Med. 2016; 165: 161–166.
Valent P, Hadzijusufovic E, Schernthaner GH, et al. Vascular safety issues in CML patients treated with BCR/ABL1 kinase inhibitors. Blood 2015; 125: 901–906.
Rutherford RB, Baker JD, Ernst C, et al. Recommended standards for reports dealing with lower extremity ischemia: revised version. J Vasc Surg. 1997; 26: 517–538.
Piepoli MF, Hoes AW, Agewall S, et al. 2016 European guidelines on cardiovascular disease prevention in clinical practice: the Sixth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of 10 societies and by invited experts). Eur Heart J. 2016; 37: 2315–2381.
Quintás-Cardama A, Kantarjian H, O’Brien S, et al. Pleural effusion in patients with chronic myelogenous leukemia treated with dasatinib after imatinib failure. J Clin Oncol. 2007; 25: 3908–3914.
Cortes JE, Jimenez CA, Mauro MJ, et al. Pleural effusion in dasatinib-treated patients with chronic myeloid leukemia in chronic phase: identification and management. Clin Lymphoma Myeloma Leuk. 2017; 17: 78–82.
Hughes TP, Laneuville P, Rousselot P, et al. Incidence, outcomes, and risk factors of pleural effusion in patients receiving dasatinib therapy for Philadelphia chromosome-positive leukemia. Haematologica 2019; 104: 93–101.
Apperley JF, Cortes JE, Kim DW, et al. Dasatinib in the treatment of chronic myeloid leukemia in accelerated phase after imatinib failure: the START A trial. J Clin Oncol. 2009; 27: 3472–3479.
Montani D, Bergot E, Günther S, et al. Pulmonary arterial hypertension in patients treated by dasatinib. Circulation 2012; 125: 2128–2137.
Bergeron A, Bergot E, Vilela G, et al. Hypersensitivity pneumonitis related to imatinib mesylate. J Clin Oncol. 2002; 20: 4271–4272.
Breccia M, Muscaritoli M, Gentilini F, et al. Impaired fasting glucose level as metabolic side effect of nilotinib in non-diabetic chronic myeloid leukemia patients resistant to imatinib. Leuk Res. 2007; 31: 1770–1772.
Giles FJ, Rea D, Rosti G, et al. Impact of age on efficacy and toxicity of nilotinib in patients with chronic myeloid leukemia in chronic phase: ENEST1st subanalysis. J Cancer Res Clin Oncol. 2017; 143: 1585–1596.
Breccia M, Muscaritoli M, Cannella L, et al. Fasting glucose improvement under dasatinib treatment in an accelerated phase chronic myeloid leukemia patient unresponsive to imatinib and nilotinib. Leuk Res. 2008; 32: 1626–1628.
Gottardi M, Manzato E, Gherlinzoni F. Imatinib and hyperlipidemia. N Engl J Med. 2005; 353: 2722–2723.
Aichberger KJ, Herndlhofer S, Schernthaner GH, et al. Progressive peripheral arterial occlusive disease and other vascular events during nilotinib therapy in CML. Am J Hematol. 2011; 86: 533–539.
Cortes JE, Gambacorti-Passerini C, Deininger MW, et al. Bosutinib versus imatinib for newly diagnosed chronic myeloid leukemia: results from the randomized BFORE trial. J Clin Oncol. 2018; 36: 231–237.
Teo YL, Ho HK, Chan A. Risk of tyrosine kinase inhibitors-induced hepatotoxicity in cancer patients: a meta-analysis. Cancer Treat Rev. 2013; 39: 199–206.
Ridruejo E, Cacchione R, Villamil AG, et al. Imatinib-induced fatal acute liver failure. World J Gastroenterol. 2007; 13: 6608–6611.
Ferrero D, Pogliani EM, Rege-Cambrin G, et al. Corticosteroids can reverse severe imatinib-induced hepatotoxicity. Haematologica 2006; 91(6 Suppl): ECR27.
Quintás-Cardama A, Kantarjian H, Ravandi F, et al. Bleeding diathesis in patients with chronic myelogenous leukemia receiving dasatinib therapy. Cancer 2009; 115: 2482–2490.
Mezei G, Debreceni IB, Kerenyi A, et al. Dasatinib inhibits coated-platelet generation in patients with chronic myeloid leukemia. Platelets 2019; 30: 836–843.
Palandri F, Castagnetti F, Soverini S, et al. Pancreatic enzyme elevation in chronic myeloid leukemia patients treated with nilotinib after imatinib failure. Haematologica 2009; 94: 1758–1761.
Nicolini FE, Alcazer V, Huguet F, et al. CML patients show sperm alterations at diagnosis that are not improved with imatinib treatment. Leuk Res. 2016; 48: 80–83.
Apperley J. Issues of imatinib and pregnancy outcome. J Natl Compr Canc Netw. 2009; 7: 1050–1058.
Carlier P, Markarian M, Bernard N, et al. Pregnancy outcome among partners of male patients receiving imatinib, dasatinib or nilotinib in chronic myeloid leukemia: reports collected by the French network pharmacovigilance centers. Arch Gynecol Obstet. 2017; 295: 269–271. [Erratum: Arch Gynecol Obstet. 2017; 295: 1059.]
Chelysheva E, Turkina A. Risks and challenges of CML management during pregnancy: looking for a balanced decision. Eur J Haematol. 2019; 102: 378–379.