Összefoglaló. A molekuláris diagnosztikai módszerek folyamatos fejlődésének köszönhetően egyre több onkogén genetikai eltérést azonosítanak. A neurotrofikus tropomiozin receptor-tirozin-kináz (NTRK-) génfúziók fontos precíziós onkológiai célpontok, melyek mindhárom NTRK-génben előfordulhatnak, onkogén-hajtóerőként viselkednek. A génfúziók különböző molekuláris diagnosztikai módszerekkel azonosíthatók, melyek közül a legpontosabb, legköltségesebb és legidőigényesebb meghatározást az újgenerációs szekvenálási technika jelenti. A tropomiozin receptor-tirozin-kináz (TRK-) fúziós fehérjék szelektív gátlása személyre szabott onkológiai kezelési lehetőséget jelent a tumor típusától, lokalizációjától és a beteg életkorától függetlenül. Az első generációs TRK-gátlók gyors, hatékony és tartós daganatellenes hatást biztosítanak kimutatott NTRK-fúzió-pozitív daganatok esetén, alacsony mellékhatásprofil mellett. Az első generációs TRK-gátlók mellett jelentkező ’on target’ rezisztenciát a második generációs TRK-gátlók oldják fel. Szekvenciális tirozin-kináz-inhibitor-kezeléssel tartós betegségmentes túlélés érhető el. Orv Hetil. 2021; 162(34): 1362–1369.
Summary. Due to the continuous development of molecular diagnostic methods, more and more oncogenic genetic abnormalities are being identified. Neurotrophic tropomyosin receptor tyrosine kinase (NTRK) gene fusions are important precision oncology targets that can occur in all three NTRK genes and act as oncogenic drivers. Gene fusions can be identified by a variety of molecular diagnostic technologies, of which next-generation sequencing is the most accurate, costly and time-consuming determination. Selective inhibition of tropomyosin receptor tyrosine kinase (TRK) fusion proteins represents a personalized oncology treatment option regardless of tumour type, localization and patient age. First-generation TRK inhibitors provide rapid, efffective and long-lasting antitumor activity in NTRK fusion-positive tumors with a low side-effect profile. On target resistance to first-generation TRK inhibitors is resolved by second-generation TRK inhibitors. Durable disease-free survival can be achieved with sequential tyrosine kinase inhibitor therapies. Orv Hetil. 2021; 162(34): 1362–1369.
Amatu A, Sartore-Bianchi A, Siena S. NTRK gene fusions as novel targets of cancer therapy across multiple tumour types. ESMO Open 2016; 1: e000023.
Cocco E, Scaltriti M, Drilon A. NTRK fusion-positive cancers and TRK inhibitor therapy. Nat Rev Clin Oncol. 2018; 15: 731–747.
Drilon A. TRK inhibitors in TRK fusion-positive cancers. Ann Oncol. 2019; 30(Suppl 8): viii23–viii30.
U.S. Food and Drug Administration. FDA approves larotrectinib for solid tumors with NTRK gene fusions. Silver Spring, MD, 12/14/2018. Available from: https://www.fda.gov/drugs/fda-approves-larotrectinib-solid-tumors-ntrk-gene-fusions [accessed: December 14, 2018].
U.S. Food and Drug Administration. FDA approves entrectinib for NTRK solid tumors and ROS-1 NSCLC. Silver Spring, MD, 08/16/2019. Available from: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-entrectinib-ntrk-solid-tumors-and-ros-1-nsclc [accessed: August 16, 2019].
Penault-Llorca F, Rudzinski ER, Sepulveda AR. Testing algorithm for identification of patients with TRK fusion cancer. J Clin Pathol. 2019; 72: 460–467.
Drilon A, Laetsch TW, Kummar S, et al. Efficacy of larotrectinib in TRK fusion-positive cancers adults and children. N Engl J Med. 2018; 378: 731–739.
Vaishnavi A, Le AT, Doebele RC. TRKing down an old oncogene in a new era of targeted therapy. Cancer Discov. 2015; 5: 25–34.
Stransky N, Cerami E, Schalm S, et al. The landscape of kinase fusions in cancer. Nat Commun. 2014; 5: 4846.
Martin-Zanca D, Hughes SH, Barbacid M. A human oncogene formed by the fusion of truncated tropomyosin and protein tyrosine kinase sequences. Nature 1986; 319: 743–748.
Hechtman JF, Benayed R, Hyman DM, et al. Pan-Trk immunohistochemistry is an efficient and reliable screen for the detection of NTRK fusions. Am J Surg Pathol. 2017; 41: 1547–1551.
Hsiao SJ, Zehir A, Sireci AN, et al. Detection of tumor NTRK gene fusions to identify patients who may benefit from tyrosine kinase (TRK) inhibitor therapy. J Mol Diag. 2019; 21: 553–571.
Marchiò C, Scaltriti M, Ladanyi M, et al. ESMO recommendation on standard methods to detect NTRK fusions in daily practice and clinical research. Ann Oncol. 2019; 30: 1417–1427.
Davies KD, Le AT, Sheren J, et al. Comparison of molecular testing modalities for detection of ROS1 rearrangements in a cohort of positive patient samples. J Thorac Oncol. 2018; 13: 1474–1482.
Beadling C, Wald AI, Warrick A, et al. A multiplexed amplicon approach for detecting gene fusions by next-generation sequencing. J Mol Diagn. 2016; 18: 165–175.
Lippai Z, Sápi Z. Diagnostic approach of tumors with neurotrophic tropomyosin receptor tyrosine kinase gene fusion. [A neurotrofikus tropomiozin receptor-tirozin-kináz génfúziót tartalmazó daganatok diagnosztikai megközelítése.] Orv Hetil. 2020; 161: 1753–1763. [Hungarian]
Serratì S, De Summa S, Pilato B, et al. Next-generation sequencing: advances and applications in cancer diagnosis. Onco Targets Ther. 2016; 9: 7355–7365.
European Medicines Agency. Vitrakvi. Amsterdam, 19/09/2019. Available from: https://ema.europa.eu/en/medicines/human/EPAR/vitrakvi [accessed: September 19, 2019].
Drilon A, Nagasubramanian R, Blake JF, et al. A next-generation TRK kinase inhibitor overcomes acquired resistance to prior TRK kinase inhibition in patients with TRK fusion-positive solid tumors. Cancer Discov. 2017; 7: 963–972.
Zhai D, Deng W, Huang J, et al. Abstract 3161: TPX-0005, an ALK/ROS1/TRK inhibitor, overcomes multiple resistance mechanisms by targeting SRC/FAK signaling. Cancer Res. 2017; 77(13 Suppl): 3161.
Doebele RC, Davis LE, Vaishnavi A, et al. An oncogenic NTRK fusion in a patient with soft-tissue sarcoma with response to the tropomyosin-related kinase inhibitor LOXO-101. Cancer Discov. 2015; 5: 1049–1057.
Menichincheri M, Ardini E, Magnaghi P, et al. Discovery of entrectinib: a new 3-aminoindazole as a potent anaplastic lymphoma kinase (ALK), c-ros oncogene 1 kinase (ROS1), and pan-tropomyosin receptor kinases (pan-TRKs) inhibitor. J Med Chem. 2016; 59: 3392–3408.
European Medicines Agency. Vitrakvi. Prescribing information. [Vitrakvi. Alkalmazási előírás.] Amsterdam, 19/09/2019. Available from: https://europa.eu/documents/product-information/vitrakvi-epar-product-information_hu.pdf [accessed: September 19, 2019]. [Hungarian]
Drilon A, DuBois SG, Farago AF, et al. Activity of larotrectinib in TRK fusion cancer patients with brain metastases or primary central nervous system tumors. J Clin Oncol. 2019; 37(15 Suppl): 2006.
Rosen EY, Schram AM, Young RJ, et al. Larotrectinib demonstrates CNS efficacy in TRK fusion-positive solid tumors. JCO Precis Oncol. 2019; 3: PO.19.00009.
Hyman D, Tan DS, vanTilburg C, et al. Durability of response with larotrectinib in adult and pediatric patients with TRK fusion cancer. Ann Oncol. 2019; 30(Suppl 9): IX123.
Hong DS, DuBois SG, Kummar S, et al. Larotrectinib in patients with TRK fusion-positive solid tumours: a pooled analyses of three phase 1/2 clinical trials. Lancet Oncol. 2020; 21: 531–540.
European Medicines Agency. Rozlytrek. Prescribing information. [Rozlytrek. Alkalmazási előírás.] Amsterdam, 31/07/2020. Available from: https://ema.europa.eu/en/documents/product-information/rozlytrek-epar-product-information_hu.pdf [accessed: July 31, 2020]. [Hungarian]
Demetri GD, Paz-Ares L, Farago AF, et al. Efficacy and safety of entrectinib in patients with NTRK fusion-positive tumours: pooled analysis of STARTRK-2, STARTRK-1, and ALKA-372-001. Ann Oncol. 2018; 29(Suppl 9): ix173–ix178.
European Medicines Agency. Rozlytrek. Amsterdam, 31/07/2020. Available from: https://ema.europa/en/medicines/human/EPAR/rozlytrek [accessed: July 31, 2020].
Doeble RC, Drilon A, Paz-Ares L, et al. Entrectinib in patients with advanced or metastatic NTRK fusion-positive solid tumours: integrated analysis of three phase 1–2 trials. Lancet Oncol. 2020; 21(2): 271–282. [Erratum: Lancet Oncol. 2020; 21(2): e70.] [Erratum: Lancet Oncol. 2020; 21(7): e341.] [Erratum: Lancet Oncol. 2020; 21(8): e372.]
Ziegler DS, Doz F, Geoerger B, et al. Activity of larotrectinib in TRK fusion cancer patients with primary central nervous system tumours. Ann Oncol. 2019; 30(Suppl 9): ix124.
Siena S, Doebele RC, Shaw AT, et al. Efficacy of entrectinib in patients with solid tumors and central nervous system metastases: integrated analysis from three clinical trials. J Clin Oncol. 2019; 37(15 Suppl): Abstract 3017.
Russo M, Misale S, Wei G, et al. Acquired resistance to the TRK inhibitor entrectinib in colorectal cancer. Cancer Discov. 2016; 6: 36–44.
Cocco E, Schram AM, Kulick A, et al. Resistance to TRK inhibition mediated by convergent MAPK pathway activation. Nat Med. 2019; 25: 1422–1427.
National Library of Medicine. Selitrectinib. Available from: pubchem.ncbi.nlm.nih.gov/compound/Selitrectinib [accessed: August 19, 2020].
National Library of Medicine. Repotrectinib. Available from: pubchem.ncbi.nlm.nih.gov/compound/Repotrectinib [accessed: August 19, 2020].
Hyman DM, Kummar S, Farago AF, et al. Phase I and expanded access experience of LOXO-195 (BAY 2731954), a selective next-generation TRK inhibitor (TRK). In: Proceedings of the 110th Annual Meeting of the American Association for Cancer Research, March 29–3 April 2019, Atlanta, GA (Abstract 127).
Drilon A, Ou SI, Cho BC, et al. Repotrectinib (TPX-0005) is a next generation ROS1/TRK/ALK inhibitor that potently inhibits ROS1/TRK/ALK solvent–front mutations. Cancer Discov. 2018; 8: 1227–1236.
A study of repotrectinib (TPX-0005) in patients with advanced solid tumors harboring ALK, ROS1, or NTRK1–3 rearrangements (TRIDENT-1). Available from: https://clinicaltrials.gov/ct2/show/NCT03093116 [accessed: August 19, 2020].
Drilon A, Zhai D, Deng W, et al. Repotrectinib, a next generation TRK inhibitor, overcomes TRK resistance mutations including solvent front, gatekeeper and compound mutations. In: Proceedings of the 110th Annual Meeting of the American Association for Cancer Research, March 29–April 3, 2019. Atlanta, GA (Abstract 4000).
Turning Point Therapeutics reports early interim data from registrational phase 2 TRIDENT-1 study of repotrectinib, provides regulatory update. August 19, 2020. Available from: https://ir.tptherapeutics.com/news-releases/news-release-details/turning-point-therapeutics-reports-early-interim-data/ [accessed: August 19, 2020].
Klein R, Smeyne RJ, Wurst W, et al. Targeted disruption of the trkB neurotrophin receptor gene results in nervous system lesions and neonatal death. Cell 1993; 75: 113–122.
Yeo GS, Connie Hung CC, Rochford J, et al. A de novo mutation affecting human TrkB associated with severe obesity and developmental delay. Nat Neurosci. 2004; 7: 1187–1189.
Xu B, Goulding EH, Zang K, et al. Brain-derived neurotrophic factor regulates energy balance downstream of melanocortin-4 receptor. Nat Neurosci. 2003; 6: 736–742.
Yamada K, Nabeshima T. Brain-derived neurotrophic factor/TrkB signaling in memory processes. J Pharmacol Sci. 2003; 91: 267–270.
Drilon A, Siena S, Ou SI, et al. Safety and antitumor activity of the multitargeted pan-TRK, ROS1, and ALK inhibitor entrectinib: combined results from two phase I trials (ALKA-372-001 and STARTRK-1). Cancer Discov. 2017; 7: 400–409.