Összefoglaló. A gyermekek közel fele szenved el csonttörést. Ez lehet traumás esemény vagy a csontfejlődést megzavaró genetikus, hormonális vagy egyéb eltérés a csontváz bármely részén. A leggyakoribb azonban az enyhe trauma kapcsán jelentkező csuklótáji törés, amely többnyire a pubertas alatt fordul elő. A jelenség alapja, hogy a serdülés során átmenetileg elválik egymástól a csontok méretének gyors növekedése és a csonttömeg gyarapodása, ami a longitudinális növekedést kb. egy év késéssel követi. Az így kialakuló átmeneti csontgyengeség a gyermekkori csonttörés fő oka, aminek a hatásához az említett genetikai, hormonális és életmódi rendellenességek is csatlakozhatnak. A gyermekkorban előfordult kistraumás csonttörés a felnőtt férfiaknál az osteoporosisos csonttörések fokozott rizikójával jár, ezért szűrővizsgálati kérdésként is szolgál. Nők esetében ugyanez az összefüggés még bizonyításra vár. Orv Hetil. 2021; 162(42): 1687–1692.
Summary. Bone fracture occurs nearly in half of the children. Some fractures are severe traumatic events while others are the results of genetic or hormonal or other alterations disturbing the normal development of bone. However, the majority of fractures are associated with a mild trauma, dominantly in the pubertal period. The basic pathology of the pubertal fractures is the transient deviation of peak velocity of height growth from the gain velocity of bone mass; the latter goes to peak 1 year later than height growth. This difference has been resulted in a physiologic but transient weakening of bones that can coincide with genetic, hormonal or life-style problems and all of these factors together may cause the increased fragility of the pubertal bone. Low-trauma fractures in childhood may be followed in high fracture risk of adult and aging men, so the childhood fracture seems to be a useful screening question for testing the osteoporosis in males. However, the same relation is still not proved in aging women. Orv Hetil. 2021; 162(42): 1687–1692.
Kanis JA, Cooper C, Rizzoli R, et al. European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Osteoporos Int. 2019; 30: 3–44. [Erratum: Osteoporos Int. 2020; 31: 209.] [Erratum: Osteoporos Int. 2020; 31: 801.]
Johnell O, Kanis JA. An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporos Int. 2006; 17: 1726–1733.
Péntek M, Horváth Cs, Boncz I, et al. Epidemiology of osteoporosis related fractures in Hungary from the nationwide health insurance database, 1999–2003. Osteoporos Int. 2008; 19: 243–249.
Bonjour JP, Theintz G, Law F, et al. Peak bone mass. Osteoporosis Int. 1994; 4(Suppl 1): S7–S13.
Bonjour JP, Chevalley T. Pubertal timing, bone acquisition, and risk of fracture throughout life. Endocr Rev. 2014; 35: 820–847.
Bonjour JP, Chevalley T, Ferrari S, et al. The importance and relevance of peak bone mass in the prevalence of osteoporosis. Salud Publica Mex. 2009; 51(Suppl 1): S5–S17.
Dent CE. Keynote address: problems in metabolic bone disease. In: Frame B, Parfitt MB, Duncan H. (eds.) Clinical aspects of metabolic bone disease. Excerpta Medica, Amsterdam, 1973; pp. 1–7.
Amin S, Melton LJ 3rd, Achenbach SJ, et al. A distal forearm fracture in childhood is associated with an increased risk for future fragility fractures in adult men, but not women. J Bone Miner Res. 2013; 28: 1751–1759.
Buttazzoni C, Rosengren BE, Tveit M, et al. Does a childhood fracture predict low bone mass in young adulthood? A 27-year prospective controlled study. J Bone Miner Res. 2013; 28: 351–359.
Pye SR, Tobias J, Silman AJ, et al. Childhood fractures do not predict future fractures: results from the European Prospective Osteoporosis Study. J Bone Miner Res. 2009; 24: 1314–1318.
Jones IE, Cannan R, Goulding A, et al. Distal forearm fractures in New Zealand children: annual rates in a geographically defined area. N Z Med J. 2000; 113: 443–445.
Jerrhag D, Englund M, Petersson I, et al. Increasing wrist fracture rates in children may have major implications for future adult fracture burden. Acta Orthop. 2016; 87: 296–300.
Alffram PA, Bauer GC. Epidemiology of fractures of the forearm. A biomechanical investigation of bone strength. J Bone Joint Surg Am. 1962; 44: 105–114.
Landin LA. Fracture patterns in children. Analysis of 8,682 fractures with special reference to incidence, etiology and secular changes in a Swedish urban population 1950–1979. Acta Orthop Scand. 1983; 202: 1–109.
Tiderius CJ, Landin L, Düppe H. Decreasing incidence of fractures in children: an epidemiological analysis of 1,673 fractures in Malmö, Sweden, 1993–1994. Acta Orthop Scand. 1999; 70: 622–626.
Bailey DA, Wedge JH, McCulloch RG, et al. Epidemiology of fractures of the distal end of the radius in children as associated with growth. J Bone Joint Surg Am. 1989; 71: 1225–1231.
Khosla S, Melton LJ 3rd, Dekutoski MB, et al. Incidence of childhood distal forearm fractures over 30 years: a population-based study. JAMA 2003; 290: 1479–1485.
Christoffersen T, Ahmed LA, Winther A, et al. Fracture incidence rates in Norvegian children. The Tromsø Study, Fit Futures. Arch Osteoporos. 2016; 11: 40.
Hosszú É. Abnormal bone growth in childhood. In: Lakatos P, Takács I. (eds.) Metabolic bone diseases. [A csontnövekedés zavarai gyermekkorban. In: Lakatos P, Takács I. (szerk.) Metabolikus csontbetegségek.] Medintel Könyvkiadó, Budapest, 2006; pp. 391–404. [Hungarian]
Marshall WA, Tanner JM. Variations in pattern of pubertal changes in girls. Arch Dis Child. 1969; 44: 291–303.
Marshall WA, Tanner JM. Variations in the pattern of pubertal changes in boys. Arch Dis Child. 1970; 45: 13–23.
Boutroy S, Bouxsein ML, Munoz F, et al. In vivo assessment of trabecular bone microarchitecture by high-resolution peripheral quantitative computed tomography. J Clin Endocrinol Metab. 2005; 90: 6508–6515.
Hans D, Baim S. Quantitative ultrasound (QUS) in the management of osteoporosis and assessment of fracture risk. J Clin Densitom. 2017; 20: 322–333.
Boutroy S, van Rietbergen B, Sornay-Rendu E, et al. Finite element analysis based on in vivo HR-pQCT images of the distal radius is associated with wrist fracture in postmenopausal women. J Bone Miner Res. 2008; 23: 392–399.
Krug R, Burghardt AJ, Majumdar S, et al. High-resolution imaging techniques for the assessment of osteoporosis. Radiol Clin North Am. 2010; 48: 601–621.
Horváth Cs. Measurement of bone mass. In: Lakatos P, Takács I. (eds.) Metabolic bone diseases. [A csontmennyiség vizsgálata. In: Lakatos P, Takács I. (szerk.) Metabolikus csontbetegségek.] Medintel Könyvkiadó, Budapest, 2006; pp. 69–80. [Hungarian]
Clark EM, Ness AR, Tobias JH, et al. Vigorous physical activity increases fracture risk in children irrespective of bone mass: a prospective study of the independent risk factors for fractures in healthy children. J Bone Miner Res. 2008; 23: 1012–1022.
Ferrari SL, Chevalley T, Bonjour JP, et al. Childhood fractures are associated with decreased bone mass gain during puberty: an early marker of persistent bone fragility? J Bone Miner Res. 2006; 21: 501–507.
Chevalley T, Bonjour JP, van Rietbergen B. Fractures in healthy females followed from childhood to early adulthood are associated with later menarcheal age and with impaired bone microstructure at peak bone mass. J Clin Endocrinol Metab. 2012; 97: 4174–4181.
Chevalley T, Bonjour JP, Ferrari S, et al. Influence of age at menarche on forearm bone microstructure in healthy young women. J Clin Endocrinol Metab. 2008; 93: 2594–2601.
Kindblom JM, Lorentzon M, Norjavaara E, et al. Pubertal timing predicts previous fractures and BMD in young adult men: the GOOD study. J Bone Miner Res. 2006; 21: 790–795.
Farr JN, Amin S, Melton LJ 3rd, et al. Bone strength and structural deficits in children and adolescents with a distal forearm fracture resulting from mild trauma. J Bone Miner Res. 2014; 29: 590–599.
Fournier PE, Rizzoli R, Slosman DO, et al. Asynchrony between the rates of standing height gain and bone mass accumulation during puberty. Osteoporos Int. 1997; 7: 525–532.
Cooper C, Dennison EM, Leufkens HG, et al. Epidemiology of childhood fractures in Britain: a study using the general practice research database. J Bone Miner Res. 2004; 19: 1976–1981.
Parfitt AM. The two faces of growth: benefits and risks to bone integrity. Osteoporos Int. 1994; 4: 382–398.
Kirmani S, Christen D, van Lenthe GH, et al. Bone structure at the distal radius during adolescent growth. J Bone Miner Res. 2009; 24: 1033–1042.
Wu F, Mason B, Horne A, et al. Fractures between the ages of 20 and 50 years increase women’s risk of subsequent fractures. Arch Intern Med. 2002; 162: 33–36.
Farr JN, Khosla S, Achenbach SJ, et al. Diminished bone strength is observed in adult women and men who sustained a mild trauma distal forearm fracture during childhood. J Bone Miner Res. 2014; 29: 2193–2202.
Kanis JA, Oden A, Johansson H, et al. FRAX and its applications to clinical practice. Bone 2009; 44: 734–743.
McCloskey E, Rathi J, Heijmans S, et al. The osteoporosis treatment gap in patients at risk of fracture in European primary care: a multi-country cross-sectional observational study. Osteoporosis Int. 2021; 32: 251–259.