View More View Less
  • 1 Állatorvostudományi Egyetem, Budapest, Hungária krt. 23–25., 1143
  • 2 Országos Korányi Tbc és Pulmonológiai Intézet, Budapest

Összefoglaló. A mikroszkóp felfedezése óta tudjuk, hogy az egymással szoros közelségben élő egyedeknek nem csupán a látható élőhelyük közös, hanem szemmel nem érzékelhető mikroorganizmusokat is megosztanak egymással, melyek bizonyos fokban adaptálódtak gazdáikhoz. Az emberek életterének bővülésével és ezzel párhuzamosan az állatok élőhelyének csökkenésével azonban új állatfajok kerülhetnek veszélyes közelségbe, ami következményes mikrobaátadással és az új gazdában a mikroba eltérő viselkedésével járhat. Feltételezhetően ez a jelenség vezetett a súlyos akut légzőszervi szindróma koronavírus-2 (SARS-CoV-2) kialakulásához, mely 2019-ben jelent meg először emberekben, és néhány hónap leforgása alatt milliókat fertőzött meg az egész világon. A pandémia leküzdéséhez és az újabb járványok megelőzéséhez minden lehetséges eszközt fel kell használni, ami együttműködést kíván a humánorvoslás és az állatgyógyászat, valamint az ökológiai, evolúciós és környezeti tudományok szakemberei között a globális „Egy Egészség” keretében. A közös célok érdekében történő összefogás jegyében a jelen tanulmány állatorvos és humánorvos szerzőpárosa összefoglalja azon ismereteket, amelyek a SARS-CoV-2 vonatkozásában mindkét szakma számára érdemlegesek lehetnek. Bemutatásra kerül a vírus eredete, természetes és mesterséges előfordulása különböző állatfajokban, valamint az állati koronavírusokkal kapcsolatos azon tapasztalatok, amelyek hozzájárulhatnak a SARS-CoV-2 működésének megértéséhez és az ellene való védekezés tökéletesítéséhez. Orv Hetil. 2021; 162(5): 163–170.

Summary. Introduction: Since the discovery of the microscope, we have known that individuals living in close proximity to each other share not only their visible habitat, but also invisible microorganisms that have adapted to some degree to their hosts. However, as human habitat expands and, in parallel, animal territory declines, new animal species can come into dangerous proximity, which may result in consequential transmission of microbes and different microbial behaviour in the new host. Presumably, this phenomenon led to the development of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which first appeared in humans in 2019 and infected millions over the course of a few months worldwide. All possible means must be used to combat the pandemic and prevent further epidemics, which will require cooperation between professionals in human medicine and veterinary medicine as well as in the ecological, evolutionary and environmental sciences, within the framework of the global “One Health”. In a spirit of working together for common goals, the authors of this study, a veterinarian and a human physician, summarize the knowledge that may be relevant to both professions for SARS-CoV-2. The origin of the virus, its natural and artificial occurrence in different animal species, and experiences with animal coronaviruses that may contribute to the understanding of the functioning of SARS-CoV-2 and the development of protection against it are presented. Orv Hetil. 2021; 162(5): 163–170.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1

    Destoumieux-Garzón D, Mavingui P, Boetsch G, et al. The One Health concept: 10 years old and a long road ahead. Front Vet Sci. 2018; 5: 14.

  • 2

    Woo PCY, Huang Y, Lau SK, et al. Coronavirus genomics and bioinformatics analysis. Viruses 2010; 2: 1804–1820.

  • 3

    Decaro N, Martella V, Saif LJ, et al. COVID-19 from veterinary medicine and One Health perspectives: what animal coronaviruses have taught us. Res Vet Sci. 2020; 131: 21–23.

  • 4

    Lorusso A, Decaro N, Schellen P, et al. Gain, preservation, and loss of a group 1a coronavirus accessory glycoprotein. J Virol. 2008; 82: 10312–10317.

  • 5

    Woo PC, Lau SK, Lam CS, et al. Discovery of seven novel mammalian and avian coronaviruses in the genus Deltacoronavirus supports bat coronaviruses as the gene source of Alphacoronavirus and Betacoronavirus and avian coronaviruses as the gene source of Gammacoronavirus and Deltacoronavirus. J Virol. 2012; 86: 3995–4008.

  • 6

    Corman VM, Muth D, Niemeyer D, et al. Hosts and sources of endemic human coronaviruses. Adv Virus Res. 2018; 100: 163–188.

  • 7

    Zhou P, Fan H, Lan T, et al. Fatal swine acute diarrhoea syndrome caused by an HKU2-related coronavirus of bat origin. Nature 2018; 556: 255–258.

  • 8

    Sun H, Xiao Y, Liu J, et al. Prevalent Eurasian avian-like H1N1 swine influenza virus with 2009 pandemic viral genes facilitating human infection. Proc Natl Acad Sci USA 2020; 117: 17204–17210.

  • 9

    Bennett AJ, Paskey AC, Ebinger A, et al. Relatives of rubella virus in diverse mammals. Nature 2020; 586: 424–428.

  • 10

    Cui J, Li F, Shi ZL. Origin and evolution of pathogenic coronaviruses. Nat Rev Microbiol. 2019; 17: 181–192.

  • 11

    Morens DM, Breman JG, Calisher CH, et al. The origin of COVID-19 and why it matters. Am J Trop Med Hyg. 2020; 103: 955–959.

  • 12

    Wu F, Zhao S, Yu B, et al. A new coronavirus associated with human respiratory disease in China. Nature 2020; 579: 265–269.

  • 13

    Dong E, Du H, Gardner L. An interactive web-based dashboard to track COVID-19 in real time. Lancet Infect Dis. 2020; 20: 533–534. [Erratum: Lancet Infect Dis. 2020; 20(9): e215.]

  • 14

    Latinne A, Hu B, Olival KJ, et al. Origin and cross-species transmission of bat coronaviruses in China. Nat Comm. 2020; 11: 4235.

  • 15

    Lam TT, Jia N, Zhang YW, et al. Identifying SARS-CoV-2-related coronaviruses in Malayan pangolins. Nature 2020; 583: 282–285.

  • 16

    Freuling CM, Breithaupt A, Müller T, et al. Susceptibility of raccoon dogs for experimental SARS-CoV-2 infection. Emerg Infect Dis. 2020; 26: 2982–2985.

  • 17

    Mallapaty S. Scientists call for pandemic investigations to focus on wildlife trade. Nature 2020; 583: 344.

  • 18

    Hubálek Z. Emerging human infectious diseases: anthroponoses, zoonoses, and sapronoses. Emerg Infect Dis. 2003; 9: 403–404.

  • 19

    Messenger AM, Barnes AN, Gray GC. Reverse zoonotic disease transmission (zooanthroponosis): a systematic review of seldom-documented human biological threats to animals. PLoS ONE 2014; 9: e89055.

  • 20

    McAloose D, Laverack M, Wang L, et al. From people to panthera: natural SARS-CoV-2 infection in tigers and lions at the Bronx Zoo. mBio 2020; 11: e02220-20.

  • 21

    Shi J, Wen Z, Zhong G, et al. Susceptibility of ferrets, cats, dogs, and other domesticated animals to SARS-coronavirus 2. Science 2020; 368: 1016–1020.

  • 22

    Sailleau C, Dumarest M, Vanhomwegen J, et al. First detection and genome sequencing of SARS-CoV-2 in an infected cat in France. Transbound Emerg Dis. 2020; 67: 2324–2328.

  • 23

    Mathavarajah S, Dellaire G. Lions, tigers and kittens too: ACE2 and susceptibility to COVID-19. Evol Med Public Health 2020; 2020: 109–113.

  • 24

    Abdel-Moneim AS, Abdelwhab EM. Evidence for SARS-CoV-2 infection of animal hosts. Pathogens 2020; 9: 529.

  • 25

    Molenaar RJ, Vreman S, Hakze-van der Honing RW, et al. Clinical and pathological findings in SARS-CoV-2 disease outbreaks in farmed mink (Neovison vison). Vet Pathol. 2020; 57: 653–657.

  • 26

    Mohanty SK, Satapathy A, Naidu MM, et al. Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and coronavirus disease 19 (COVID-19) – anatomic pathology perspective on current knowledge. Diagn Pathol. 2020; 15: 103.

  • 27

    Oude Munnink BB, Sikkema RS, Nieuwenhuijse DF, et al. Jumping back and forth: anthropozoonotic and zoonotic transmission of SARS-CoV-2 on mink farms. bioRxiv 2020. Doi: https://doi.org/10.1101/2020.09.01.277152.

  • 28

    Morris KY, Bowman J, Schulte‐Hostedde A, et al. Functional genetic diversity of domestic and wild American mink (Neovison vison). Evol Appl. 2020; 13: 2610–2629.

  • 29

    Lutz C, Maher L, Lee C, et al. COVID-19 preclinical models: human angiotensin-converting enzyme 2 transgenic mice. Hum Genomics 2020; 14: 20.

  • 30

    McCray PB Jr, Pewe L, Wohlford-Lenane C, et al. Lethal infection of K18-hACE2 mice infected with severe acute respiratory syndrome coronavirus. J Virol. 2007; 81: 813–821.

  • 31

    Zheng J, Wong LYR, Li K, et al. COVID-19 treatments and pathogenesis including anosmia in K18-hACE2 mice. Nature 2020 Nov 9. . [Epub ahead of print]

    • Crossref
    • Export Citation
  • 32

    Muñoz-Fontela C, Dowling WE, Funnell SG, et al. Animal models for COVID-19. Nature 2020; 586: 509–515.

  • 33

    Sia SF, Yan LM, Chin AW, et al. Pathogenesis and transmission of SARS-CoV-2 in golden hamsters. Nature 2020; 583: 834–838.

  • 34

    Enkirch T, von Messling V. Ferret models of viral pathogenesis. Virology 2015; 479–480: 259–270.

  • 35

    Leist SR, Schäfer A, Martinez DR. Cell and animal models of SARS-CoV-2 pathogenesis and immunity. Dis Model Mech. 2020; 13(9): dmm046581. Doi: 10.1242/dmm.046581.

  • 36

    Yu P, Qi F, Xu Y, et al. Age-related rhesus macaque models of COVID-19. Animal Model Exp Med. 2020; 3: 93–97.

  • 37

    Priestnall SL. Canine respiratory coronavirus: a naturally occurring model of COVID-19? Vet Pathol. 2020; 57: 467–471.

  • 38

    Wille M, Wensman JJ, Larsson S, et al. Evolutionary genetics of canine respiratory coronavirus and recent introduction into Swedish dogs. Infect Genet Evol. 2020; 82: 104290.

  • 39

    Ma Z, Li P, Ji Y, et al. Cross-reactivity towards SARS-CoV-2: the potential role of low-pathogenic human coronaviruses. Lancet Microbe 2020; 1: e151.

  • 40

    Saif LJ, Jung K. Comparative pathogenesis of bovine and porcine respiratory coronaviruses in the animal host species and SARS-CoV-2 in humans. J Clin Microbiol. 2020; 58: e01355-20.

  • 41

    Fontes D, Reyes J, Ahmed K, et al. A study of fluid dynamics and human physiology factors driving droplet dispersion from a human sneeze. Phys Fluids (1994) 2020; 32: 111904.

  • 42

    Hartmann K. Feline infectious peritonitis. Vet Clin North Am Small Anim Pract. 2005; 35: 39–79.

  • 43

    Kennedy MA. Feline infectious peritonitis: update on pathogenesis, diagnostics, and treatment. Vet Clin North Am Small Anim Pract. 2020; 50: 1001–1011.

  • 44

    Addie D, Belák S, Boucraut-Baralon C, et al. Feline infectious peritonitis. ABCD guidelines on prevention and management. J Feline Med Surg. 2009; 11: 594–604.

  • 45

    Pedersen NC, Perron M, Bannasch M, et al. Efficacy and safety of the nucleoside analog GS-441524 for treatment of cats with naturally occurring feline infectious peritonitis: J Feline Med Surg. 2019; 21: 271–281.

  • 46

    Sokolowska M, Lukasik ZM, Agache I, et al. Immunology of COVID-19: mechanisms, clinical outcome, diagnostics, and perspectives – a report of the European Academy of Allergy and Clinical Immunology (EAACI). Allergy 2020; 75: 2445–2476.

  • 47

    Beigel JH, Tomashek KM, Dodd LE, et al. Remdesivir for the treatment of COVID-19 – final report. N Engl J Med. 2020; 383: 1813–1826.

  • 48

    Balka G, Bálint Á, Cságola A, et al. Vaccine developments and pharmacological treatment options against SARS-CoV-2 infection and the control of coronaviruses in domestic animals – Literature review. [A háziállatok főbb coronavírusai, és a SARS-CoV-2 elleni vakcinás és gyógyszeresvédekezés lehetőségei – Irodalmi áttekintés.] Magy Állatorv L. 2020; 142: 323–348. [Hungarian]

  • 49

    Krammer F. SARS-CoV-2 vaccines in development. Nature 2020; 586: 516–527.

  • 50

    Saad-Roy CM, Wagner CE, Baker RE, et al. Immune life history, vaccination, and the dynamics of SARS-CoV-2 over the next 5 years. Science 2020; 370: 811–818.

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Nov 2020 0 0 0
Dec 2020 0 0 0
Jan 2021 0 8 5
Feb 2021 0 90 120
Mar 2021 0 51 129
Apr 2021 0 69 115
May 2021 0 0 0