View More View Less
  • 1 Pécsi Tudományegyetem, Általános Orvostudományi Kar, Klinikai Központ, Aneszteziológiai és Intenzív Terápiás Intézet, Pécs, Ifjúság útja 13., 7623
  • 2 Pécsi Tudományegyetem, Általános Orvostudományi Kar, Klinikai Központ, Orvosi Mikrobiológiai Intézet, Pécs
  • 3 Zala Megyei Szent Rafael Kórház, Aneszteziológiai és Intenzív Terápiás Osztály, Zalaegerszeg

Összefoglaló. Gyógyszereink egy részének jelentős, az eredeti alkalmazástól eltérő hatása is van. Ezek felismerése fontos, hogy elkerüljük a nem várt mellékhatásokat, vagy kihasználjuk ezeket a kedvező adottságokat. A helyi érzéstelenítők antibakteriális hatása 1909 óta ismert, de ennek több évtizeden keresztül nem tulajdonítottak jelentőséget. Az 1960-as években figyeltek fel először az álnegatív mikrobiológiai eredmények lehetőségére, helyi érzéstelenítőket használva a mintavételhez. Tanulmányok igazolták, hogy a bronchoszkópiás, seb-, bőr- vagy fül-, orr-, gégészeti bakteriológiai eredmények is érintve lehetnek. A ma is használt gyógyszerek közül a 0,5%-os bupivakainnak és a 2%-os lidokainnak van jelentős antibakteriális hatása Gram-pozitív és Gram-negatív baktériumokkal szemben, ami kifejezettebb 37 °C-on, mint szobahőmérsékleten. A legerősebb antibakteriális hatást a 0,5%-os bupivakain mutatta. A napi gyakorlatban alkalmazott koncentrációjuk magasabb, mint a különböző klinikai izolátumokkal szemben meghatározott minimális gátló koncentráció. Fenti tulajdonságaik alapján felmerült szerepük a kórházi sebfertőzések csökkentésében is. A hatásmechanizmus több pontja ismert, károsítják a sejthártya integritását, és több bakteriális enzim működését gátolják. Orv Hetil. 2021; 162(5): 171–176.

Summary. Medications may have important impacts other than the original effect. It is important to know about these to avoid side effects or use these beneficial capabilities. The antibacterial effect of local anaesthetics has been known since 1909. For decades, no attention has been payed to this fact. In the 1960s, the high number of negative microbiological results when local anaesthetics were used before sampling drew attention to the possible antibacterial effect. Studies suggested that cultures from bronchoscopy, wound, skin or nasal samples may be affected. Bupivacaine 0,5% and lidocaine 2% have the most noticeable effect against both Gram-positive and Gram-negative bacteria. This impact is more pronounced at 37 °C than at room temperature. Bupivacaine 0,5% has the most pronounced effect. The concentration of local anaesthetics in daily routine is higher than the minimal inhibitory concentration against various clinical isolates. In the view of these results, they may contribute to reduce surgical site infections. There are known details regarding the mechanism of action. Local anaesthetics have target sites on cellular membrane and inhibit bacterial enzymes. Orv Hetil. 2021; 162(5): 171–176.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1

    Koller C. On the use of cocaine for producing anaesthesia on the eye. Lancet 1884; 124(2): 990–992.

  • 2

    Molnár C, Nemes C, Szabó S, et al. Harvey Cushing, a pioneer of neuroanesthesia. J Anesth. 2008; 22: 483–486.

  • 3

    Jonnesco T. Remarks on general spinal analgesia. Br Med J. 1909; 2: 1396–1401.

  • 4

    Murphy JT, Allen HF, Mangiaracine AB. Preparation, sterilization, and preservation of ophthalmic solutions; experimental studies and a practical method. AMA Arch Ophthalmol. 1955; 53: 63–78.

  • 5

    Erlich H. Bacteriologic studies and effects of anesthetic solutions on bronchial secretions during bronchoscopy. Am Rev Respir Dis. 1961; 84: 414–421.

  • 6

    Waltz PK, Zuckerbraun BS. Surgical site infections and associated operative characteristics. Surg Infect (Larchmt). 2017; 18: 447–450.

  • 7

    Heid F, Bender C, Gervais H, et al. Microbial contamination of anesthetic syringes in relation to different handling habits. Am J Infect Control 2016; 44: e15–e17.

  • 8

    Kerényi M, Borza Z, Csontos C, et al. Impact of medications on bacterial growth in syringes. J Hosp Infect. 2011; 79: 265–266.

  • 9

    Joo GE, Sohng KY, Park MY. The effect of different methods of intravenous injection on glass particle contamination from ampules. SpringerPlus 2016; 5: 15.

  • 10

    Centers for Disease Control (CDC). Postsurgical infections associated with an extrinsically contaminated intravenous anesthetic agent – California, Illinois, Maine, and Michigan, 1990. MMWR Morb Mortal Wkly Rep. 1990; 39: 426–427, 433.

  • 11

    Bátai I, Kerényi M, Tekeres M. The growth of bacteria in intravenous glyceryl trinitrate and in sodium nitroprusside. Anesth Analg. 1999; 89: 1570–1572.

  • 12

    Ittzés B, Weiling Z, Bátai IZ, et al. Atropine and glycopyrrolate do not support bacterial growth-safety and economic considerations. J Clin Anest. 2016; 35: 560–563.

  • 13

    Taki Y, Seki K, Ikigai H, et al. Effect of temperature on antibacterial activity of lidocaine to Staphylococcus aureus and Pseudomonas aeruginosa. Microbiol Immunol. 1988; 32: 429–434.

  • 14

    Rosenberg PH, Renkonen OV. Antimicrobial activity of bupivacaine and morphine. Anesthesiology 1985; 62: 178–179.

  • 15

    Zaidi S, Healy TE. A comparison of the antibacterial properties of six local analgesic agents. Anaesthesia 1977; 32: 69–70.

  • 16

    Sakuragi T, Ishino H, Dan K. Bactericidal activity of clinically used local anesthetics on Staphylococcus aureus. Reg Anesth. 1996; 21: 239–242.

  • 17

    Ravin CE, Latimer JM, Matsen JM. In vitro effects of lidocaine on anaerobic respiratory pathogens and strains of Haemophilus influenzae. Chest 1977; 72: 439–441.

  • 18

    Sculley PD, Dunley RE. Antimicrobial activity of a lidocaine preparation. Anesth Prog. 1980; 27: 21–23.

  • 19

    Kesici U, Demirci M, Kesici S. Antimicrobial effects of local anaesthetics. Int Wound J. 2019; 16: 1029–1033.

  • 20

    Yuksel FN, Karatug NT, Akcelik M. Does subinhibitory concentrations of clinically important antibiotic induce biofilm production of Enterococcus faecium strains? Acta Microbiol Immunol Hung. 2018; 65: 27–38.

  • 21

    Šmitran A, Vuković D, Opavski N, et al. Influence of subinhibitory antibiotic concentration on Streptococcus pyogenes adherence and biofilm production. Acta Microbiol Immunol Hung. 2018; 65: 229–240.

  • 22

    Conte BA, Laforet EG. The role of the topical anesthetic agent in modifying bacteriologic data obtained by bronchoscopy. N Engl J Med. 1962; 267: 957–960.

  • 23

    Kleinfeld J, Ellis PP. Inhibition of microorganisms by topical anesthetics. Appl Microbiol. 1967; 15: 1296–1298.

  • 24

    Olsen KM, Peddicord TE, Campbell GD, et al. Antimicrobial effects of lidocaine in bronchoalveolar lavage fluid. J Antimicrob Chemother. 2000; 45: 217–219.

  • 25

    Aldous WK, Jensen R, Sieck BM. Cocaine and lidocaine with phenylephrine as topical anesthetics: antimicrobial activity against common nasal pathogens. Ear Nose Throat J. 1998; 77: 554–557.

  • 26

    Kerényi M, Bátai R, Juhász V, et al. Lidocaine/prilocaine cream (EMLA) has an antibacterial effect in vitro. J Hosp Infect. 2004; 56: 75–76.

  • 27

    Bátai I, Bogár L, Juhász V, et al. A comparison of the antimicrobial property of lidocaine/prilocaine cream (EMLA) and an alcohol-based disinfectant on intact human skin flora. Anesth Analg. 2009; 108: 666–668.

  • 28

    Wang LP, Hauerberg J, Schmidt JF. Incidence of spinal epidural abscess after epidural analgesia: a national 1-year survey. Anesthesiology 1999; 91: 1928–1936.

  • 29

    Moen V, Dahlgren N, Irestedt L. Severe neurological complications after central neuraxial blockades in Sweden 1990–1999. Anesthesiology 2004; 101: 950–959.

  • 30

    James FM, George RH, Naiem H, et al. Bacteriologic aspects of epidural analgesia. Anesth Analg. 1976; 55: 187–190.

  • 31

    Bátai I, Kerényi M, Falvai J, et al. Bacterial growth in ropivacaine hydrochloride. Anesth Analg. 2002; 94: 729–731.

  • 32

    Aydin ON, Eyigor M, Aydin N. Antimicrobial activity of ropivacaine and other local anaesthetics. Eur J Anaesthesiol. 2001; 18: 687–694.

  • 33

    Feldman JM, Chapin-Robertson K, Turner J. Do agents used for epidural analgesia have antimicrobial properties? Reg Anesth. 1994; 19: 43–47.

  • 34

    Grimmond TR, Brownridge P. Antimicrobial activity of bupivacaine and pethidine. Anaesth Intensive Care 1986; 14: 418–420.

  • 35

    de Lissovoy G, Fraeman K, Hutchins V, et al. Surgical site infection: incidence and impact on hospital utilization and treatment costs. Am J Infect Control 2009; 37: 387–397.

  • 36

    Djuric O, Markovic-Denic L, Jovanovic B, et al. High incidence of multiresistant bacterial isolates from bloodstream infections in trauma emergency department and intensive care unit in Serbia. Acta Microbiol Immunol Hung. 2019; 66: 307–325.

  • 37

    Dimitrov E, Enchev E, Halacheva K, et al. Neutrophil CD64 – a potential biomarker in patients with complicated intra-abdominal infections? A literature review. Acta Microbiol Immunol Hung. 2018; 65: 245–254.

  • 38

    Stratford AF, Zoutman DE, Davidson JS. Effect of lidocaine and epinephrine on Staphylococcus aureus in a guinea pig model of surgical wound infection. Plast Reconstr Surg. 2002; 110: 1275–1279.

  • 39

    Lu CW, Lin TY, Shieh JS, et al. Antimicrobial effect of continuous lidocaine infusion in a Staphylococcus aureus-induced wound infection in a mouse model. Ann Plast Surg. 2014; 73: 598–601.

  • 40

    Kose AA, Karabaggli Y, Kiremitci A, et al. Do local anesthetics have antibacterial effect on Staphylococcus aureus under in vivo conditions? An experimental study. Dermatol Surg. 2010; 36: 848–852.

  • 41

    Sams VG, Lawson CM, Coan P, et al. Effect of local anesthetic on microorganisms in a murine model of surgical site infection. J Trauma Acute Care Surg. 2012; 73: 441–446.

  • 42

    Quiroga-Garza A, Valdivia-Balderas JM, Trejo-Sánchez MÁ, et al. A prospective, randomized, controlled clinical trial to assess use of 2% lidocaine irrigation to prevent abdominal surgical site infection. Ostomy Wound Manage. 2017; 63: 12–21.

  • 43

    Claroni C, Marcelli ME, Sofra MC, et al. Preperitoneal continuous infusion of local anesthetics: what is the impact on surgical wound infections in humans? Pain Med. 2016; 17: 582–589.

  • 44

    Chang CC, Lin HC, Lin HW, et al. Anesthetic management and surgical site infections in total hip or knee replacement: a population-based study. Anesthesiology 2010; 113: 279–284.

  • 45

    Tsai PS, Hsu CS, Fan YC, et al. General anaesthesia is associated with increased risk of surgical site infection after Caesarean delivery compared with neuraxial anaesthesia: a population-based study. Br J Anaesth. 2011; 107: 757–761.

  • 46

    Flo TH, Smith KD, Sato S, et al. Lipocalin 2 mediates an innate immune response to bacterial infection by sequestrating iron. Nature 2004; 432: 917–921.

  • 47

    Igarashi T, Suzuki T, Mori K, et al. The effects of epidural anesthesia on growth of Escherichia coli at pseudosurgical site: the roles of the lipocalin-2 pathway. Anesth Analg. 2015; 121: 81–89.

  • 48

    Wu SG, Li HT, Wang LL, et al. Lidocaine promotes fibroblast proliferation after thermal injury via up-regulating the expression of miR-663 and miR-486. Kaohsiung J Med Sci. 2020; 36: 274–280.

  • 49

    Pelz K, Wiedmann-Al-Ahmad M, Bogdan C, et al. Analysis of the antimicrobial activity of local anaesthetics used for dental analgesia. J Med Microbiol. 2008; 57: 88–94.

  • 50

    Srisatjaluk RL, Klongnoi B, Wongsirichat N. Antimicrobial effect of topical local anesthetic spray on oral microflora. J Dent Anesth Pain Med. 2016; 16: 17–24.

  • 51

    Silva MT, Sousa JC, Polónia JJ, et al. Effects of local anesthetics on bacterial cells. J Bacteriol. 1979; 137: 461–468.

  • 52

    Fazly Bazas BS, Salt WG. Local anaesthetics as antimicrobial agents: structure–action considerations. Microbios 1983; 37: 45–64.

  • 53

    Schmidt RM, Rosenkranz HS. Antimicrobial activity of local anesthetics: lidocaine and procaine. J Infect Dis. 1970; 121: 597–607.

  • 54

    Raina JL. Local anesthetics block transient expression of inducible functions for transformation in Streptococcus sanguis. J Bacteriol. 1983; 156: 450–454.

  • 55

    Szabadfi K, Dányádi B, Kiss P, et al. Preconditioning with volatile anaesthetic sevoflurane in ischemic retinal lesion in rats. J Mol Histol. 2012; 43: 565–569.

  • 56

    Batai I, Kerenyi M. Halothane decreases bacterial adherence in vitro. Acta Anaesthesiol Scand. 1999; 43: 760–763.

  • 57

    Csontos C, Rézmán B, Földi V, et al. Effect of N-acetylcysteine treatment on the expression of leukocyte surface markers after burn injury. Burns 2011; 37: 453–464.

  • 58

    Ittzés B, Szentkirályi E, Szabó Z, et al. Amiodarone that has antibacterial effect against human pathogens may represent a novel catheter lock. Acta Microbiol Immunol Hung. 2020; 67: 133–137.

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Nov 2020 0 0 0
Dec 2020 0 0 0
Jan 2021 0 9 10
Feb 2021 0 75 88
Mar 2021 0 38 23
Apr 2021 0 71 49
May 2021 0 0 0