Összefoglaló. A fertőző betegségek kóroki hátterének felderítésére irányuló törekvések hosszú időre tekintenek vissza. Fogalmakkal és követelményekkel (posztulátumokkal) igyekeztek körülírni, hogy egy mikroorganizmus mikor tekinthető egy adott fertőző betegség okozójának. Egy patogén rendszertani kategóriába tartozó mikroorganizmus kimutatása a betegből önmagában még nem elegendő bizonyíték arra, hogy a betegségnek valóban az a kórokozója. Igazolni kell a továbbiakban, hogy rendelkezik azokkal a virulenciafaktoroknak nevezett tényezőkkel, amelyek valójában képessé teszik az adott betegség kiváltására. Robert Koch idejében csak fenotípusos ismeretek álltak rendelkezésre, azok figyelembevételével fogalmazta meg posztulátumait. Később, a megszerzett molekuláris ismeretek birtokában, a posztulátumokat molekuláris szinten is értelmezték. A beteg személyét biológiai, szociális és pszichés egységként kezelő holisztikus megközelítésnek is eleget téve, a posztulátumokat a kórokozó mellett az esetben érintett gazdaszervezet egyedi tulajdonságainak figyelembevételével tovább szélesítették. A dolgozat a fenti kérdéseket példákkal illusztrálva tárgyalja, majd kitér a gyakorlati hasznosítás lehetőségeire. Orv Hetil. 2021; 162(50): 1991–1999.
Summary. Efforts to explore the casual background of infectious diseases have been ambitioned for a long time. Terms and requirements (postulates) have been created to describe in which case a microorganism can be regarded as a causative agent of a given infectious disease. Demonstration of a representative of a pathogenic taxonomic category in the patient, however, does not prove its causative role in itself. It should also be verified if the microbe possesses the so-called virulence factors enabling it to trigger the given disease. At the time when Robert Koch formulated his postulates, only phenotypic characters were at his disposal. Later, in possession of a substantial genetic knowledge, the postulates have been adapted to molecular level. For having a holistic approach, the postulates have been extended also to the host’s individual biological, social and psychological attributes. This paper discusses the above issues with examples for illustration, and outlines their practical applicabilities. Orv Hetil. 2021; 162(50): 1991–1999.
The Free Dictionary. Virulence. Available from: https://www.thefreedictionary.com/virulence.
Oxford Learner’s Dictionaries. Virulence. Available from: https://www.oxfordlearnersdictionaries.com/definition/english/virulence.
Cambridge Dictionary. Virulence. Available from: https://dictionary.cambridge.org/dictionary/english/virulence.
Merriam-Webster. Virulence. Available from: https://www.merriam-webster.com/dictionary/virulence.
Koch R. About bacteriological research. Negotiations at the X. International Medical Congress. [Über bakteriologische Forschung. Aus Verhandlungen des X. Internationalen Medizinischen Kongresses.] Berlin, 1890. Bd. I. Verlag von August Hirschwald, Berlin, 1891. [German]
Falkow S. Molecular Koch’s postulates applied to microbial pathogenicity. Rev Infect Dis. 1988; 10 (Suppl 2): S274–S276.
Henle J. Textbook of rational pathology. Second volume. Special part. [Handbuch der rationellen Pathologie. Zweiter Band. Spezieller Abteil.] Druck und Verlag von Friedrich Vieweg und Sohn, Braunschweig, 1853. [German]
Smith HW. A search for transmissible pathogenic characters in invasive strains of Escherichia coli: the discovery of a plasmid-controlled toxin and a plasmid-controlled lethal character closely associated, or identical, with colicine V. J Gen Microbiol. 1974; 83: 95–111.
Quackenbush RL, Falkow S. Relationship between colicin V activity and virulence in Escherichia coli. Infect Immun. 1979; 24: 562–564.
Williams PH, Warner PJ. ColV plasmid-mediated, colicin V-independent iron uptake system of invasive strains of Escherichia coli. Infect Immun. 1980, 29: 411–416.
Isberg RR, Falkow S. A single genetic locus encoded by Yersinia pseudotuberculosis permits invasion of cultured animal cells by Escherichia coli K-12. Nature 1985; 317: 262–264.
Miller VL, Falkow S. Evidence for two genetic loci in Yersinia enterocolitica that can promote invasion of epithelial cells. Infect Immun. 1988; 56: 1242–1248.
Falkow S. Molecular Koch’s postulates applied to bacterial pathogenicity – a personal recollection 15 years later. Nat Rev Microbiol. 2004; 2: 67–72.
Bailey MJ, Koronakis V, Schmoll T, et al. Escherichia coli HlyT protein, a transcriptional activator of haemolysin synthesis and secretion, is encoded by the rfaH (sfrB) locus required for expression of sex factor and lipopolysaccharide genes. Mol Microbiol. 1992; 6: 1003–1012.
Nagy G, Dobrindt U, Grozdanov L, et al. Transcriptional regulation through RfaH contributes to intestinal colonization by Escherichia coli. FEMS Microbiol Lett. 2005; 244: 173–180.
Blum G, Ott M, Lischewski A, et al. Excision of large DNA regions termed pathogenicity islands from tRNA-specific loci in the chromosome of an Escherichia coli wild-type pathogen. Infect Immun. 1994; 62: 606–614.
Collier RJ. Diphtheria toxin: mode of action and structure. Bacteriol Rev. 1975; 39: 54–85.
Ofek I, Hasty DL, Abraham SN, et al. Role of bacterial lectins in urinary tract infections. In: Emődy L, Pál T, Hacker J, et al. (eds.) Genes and proteins underlying microbial urinary tract virulence. Adv Exp Med Biol. 2000; 485: 183–192.
Peñaranda ME, Evans DG, Murray BE, et al. ST:LT:CFA/II plasmids in enterotoxigenic Escherichia coli belonging to serogroups O6, O8, O80, O85, and O139. J Bacteriol. 1983; 154: 980–983.
Cornelis GR, Boland A, Boyd AP, et al. The virulence plasmid of Yersinia, an antihost genome. Microbiol Mol Biol Rev. 1998; 62: 1315–1352.
El Tahir Y, Skurnik M. YadA, the multifaceted Yersinia adhesin. Int J Med Microbiol. 2001; 291: 209–218.
Emődy L, Heesemann J, Wolf-Watz H, et al. Binding to collagen by Yersinia enterocolitica and Yersinia pseudotuberculosis: evidence for yopA-mediated and chromosomally encoded mechanisms. J Bacteriol. 1989; 171: 6674–6679.
Demeure CE, Dussurget O, Mas Fiol GM, et al. Yersinia pestis and plague: an updated view on evolution, virulence determinants, immune subversion, vaccination, and diagnostics. Genes Immun. 2019; 20: 357–370.
Knirel YA, Anisimov AP. Lipopolysaccharide of Yersinia pestis, the cause of plague: structure, genetics, biological properties. Acta Naturae 2012; 4: 46–58.
Montminy SW, Khan N, McGrath S, et al. Virulence factors of Yersinia pestis are overcome by a strong lipopolysaccharide response. Nat Immunol. 2006; 7: 1066–1073.
Achtman M, Zurth K, Morelli G, et al. Yersinia pestis, the cause of plague, is a recently emerged clone of Yersinia pseudotuberculosis. Proc Natl Acad Sci USA 1999; 96: 14043–14048. [Erratum: Proc Natl Acad Sci USA 2000; 97: 8192.]
Quenee LE, Hermanas TM, Ciletti N, et al. Hereditary hemochromatosis restores the virulence of plague vaccine strains. J Infect Dis. 2012; 206: 1050–1058.
Skurnik M, Toivanen P. LcrF is the temperature-regulated activator of the yadA gene of Yersinia enterocolitica and Yersinia pseudotuberculosis. J Bacteriol. 1992; 174: 2047–2051.
Pátri E, Szabó E, Pál T, et al. Thin aggregative fimbriae on urinary Escherichia coli isolates. Adv Exp Med Biol. 2000; 485: 219–224.
Nagy G, Danino V, Dobrindt U, et al. Down-regulation of key virulence factors makes the Salmonella enterica serovar Typhimurium rfaH mutant a promising live-attenuated vaccine candidate. Infect Immun. 2006; 74: 5914–5925.
Brzuszkiewicz E, Brüggemann H, Liesegang H, et al. How to become a uropathogen: comparative genomic analysis of extraintestinal pathogenic Escherichia coli strains. Proc Natl Acad Sci USA 2006; 103: 12879–12884.
Gordillo Altamirano FL, Barr JJ. Phage therapy in the postantibiotic era. Clin Microbiol Rev. 2019; 32: e00066-18.
Jiang Q, Chen J, Yang C, et al. Quorum sensing: a prospective therapeutic target for bacterial diseases. BioMed Res Int. 2019; 2019: 2015978.
Peterson D, Damsky W, King B. The use of Janus kinase inhibitors in the time of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). J Am Acad Dermatol. 2020; 82: e223–e226.
Anisimov AP, Lindler LE, Pier GB. Intraspecific diversity of Yersinia pestis. Clin Microbiol Rev. 2004, 17: 434–464.