Összefoglaló. Bevezetés: A Dengue-, Zika- és Chikungunya-vírus-fertőzések a trópusokról importált leggyakoribb arbovírusfertőzések. Földrajzi elterjedésük átfedő, közös vektoraik és hasonló tüneteik miatt szerológiai és molekuláris módszerek együttes alkalmazásán alapuló mikrobiológiai vizsgálatokkal különíthetők el megbízhatóan. Célkitűzés: Munkánk célja a 2016 és 2020 között endémiás területen járt, tünetes és tünetmentes utazók vizsgálata volt, minden esetben mindhárom vírusfertőzés irányában. A diagnosztikus tesztek során az alvadásgátolt teljes vér és vizelet bevonásával vizsgáltuk a vírus-RNS kimutathatóságának esélyét a különböző mintatípusokból. Módszer: Savópárminták szerológiai analízise során a Dengue-, Zika- és Chikungunya-vírus-specifikus ellenanyagválasz alakulását vizsgáltuk ELISA-módszerrel. Reaktív eredmények esetében a szerológiai keresztreakciók kizárására immunfluoreszcens és ELISA-technikán alapuló további vizsgálatokat végeztünk a hazai és az utazás során érintett területeken előforduló flavi- és alphavirusok irányában. Vérsavó-, alvadásgátolt teljes vér és vizeletmintákból reverztranszkripciót követő valós idejű polimeráz-láncreakcióval vírus-RNS-kimutatást végeztünk. Eredmények: Az 1037 vizsgált utazó közül 133 esetben kaptunk reaktív szerológiai és/vagy molekuláris eredményt. Az alvadásgátolt teljes vér mintából sikerült a legnagyobb arányban vírusnukleinsavat kimutatni mind a Dengue- és Zika-, mind a Chikungunya-vírus esetében. Megbeszélés: Endémiás területről hazatért utazók vizsgálatát a tünetek hasonlósága miatt mindhárom vírusfertőzés irányában együttesen indokolt elvégezni. A flavi- és alphavirusokra jellemző nagyfokú szerológiai keresztreaktivitás miatt a nukleinsav-kimutatás javíthatja a mikrobiológiai diagnosztika pontosságát. Következtetés: A három vírus mikrobiológiai diagnosztikáját segíti a korai mintavétel és a molekuláris vizsgálatok kiterjesztése további mintatípusokra: alvadásgátolt teljes vér és vizelet. A behurcolt vírusfertőzések azonosítása fokozott jelentőségű, mert az Európában is jelen lévő vektorszúnyogfajok felvetik az autochton átvitel lehetőségét. Orv Hetil. 2021; 162(50): 2000–2009.
Summary. Introduction: Dengue-, Zika- and Chikungunya infections are among the most frequently imported tropical arbovirus infections. Due to their shared endemic regions, vectors and similar clinical symptoms, differential diagnosis is based on serological and molecular analysis. Objective: The aim of our study was to identify the imported arbovirus infections of travellers between 2016 and 2020. Furthermore, to improve the diagnostic sensitivity, anticoagulated whole blood and urine samples were involved in molecular diagnosis. Method: Virus-specific antibody kinetics was tested in paired sera of patients by ELISA method. In case of reactive results, further serological analysis was performed using immunofluorescence assays and/or ELISA tests to exclude serological cross-reactions caused by other members of the flavi- and alphaviruses. Detection of viral RNA was attempted from serum, anticoagulated whole blood and urine specimens using reverse transcription and real-time polymerase chain reaction. Results: Out of the tested 1037 travellers, reactive serological and/or molecular results were obtained in 133 cases. Anticoagulated whole blood proved to be the most suitable specimen for viral RNA detection of the three viruses. Discussion: Parallel testing of Dengue-, Zika- and Chikungunya infections is recommended, as symptom-based differential diagnosis is challenging. Due to the characteristic serological cross-reactivity of flavi- and alphaviruses, microbiological diagnosis relies on both serological and molecular tests. Conclusion: Involving anticoagulated whole blood and urine samples into molecular analysis and early sample collection improve the sensitivity of microbiological diagnostics. Identification of imported tropical arbovirus infections is of high importance as the presence of vector mosquitos in Europe raises the possibility of autochthon transmission. Orv Hetil. 2021; 162(50): 2000–2009.
Weaver SC, Reisen WK. Present and future arboviral threats. Antiviral Res. 2010; 85: 328–345.
Vasilakis N, Weaver SC. Flavivirus transmission focusing on Zika. Curr Opin Virol. 2017; 22: 30–35.
Weaver SC, Barrett AD. Transmission cycles, host range, evolution and emergence of arboviral disease. Nat Rev Microbiol. 2004; 2: 789–801.
Patterson J, Sammon M, Garg M. Dengue, Zika and Chikungunya: emerging arboviruses in the New World. West J Emerg Med. 2016; 17: 671–679.
Centers for Disease Control and Prevention. Division of vector-borne diseases. Memorandum. Revised diagnostic testing for Zika, Chikungunya, and Dengue viruses in US Public Health Laboratories. CDC, Atlanta, GA, February 2016. Available from: https://stacks.cdc.gov/view/cdc/38149 [accessed: February 18, 2021].
Mansfield KL, Horton DL, Johnson N, et al. Flavivirus-induced antibody cross-reactivity. J Gen Virol. 2011; 92: 2821–2829.
Henss L, Yue C, Kandler J, et al. Establishment of an alphavirus-specific neutralization assay to distinguish infections with different members of the Semliki Forest complex. Viruses 2019; 11: 82.
Nagy A, Mezei E, Nagy O, et al. Extraordinary increase in West Nile virus cases and first confirmed human Usutu virus infection in Hungary, 2018. Euro Surveill. 2019; 24: 1900038.
Nagy A, Nagy O, Tarcsai K, et al. First detection of tick-borne encephalitis virus RNA in clinical specimens of acutely ill patients in Hungary. Ticks Tick Borne Dis. 2018; 9: 485–489.
Suhrbier A, Jaffar-Bandjee MC, Gasque P. Arthritogenic alphaviruses – an overview. Nat Rev Rheumatol. 2012; 8; 420–429.
Lanciotti RS, Kosoy OL, Laven JJ, et al. Genetic and serologic properties of Zika virus associated with an epidemic, Yap State, Micronesia, 2007. Emerg Infect Dis. 2008; 14: 1232–1239.
Cao-Lormeau VM, Blake A, Mons S, et al. Guillain–Barré syndrome outbreak associated with Zika virus infection in French Polynesia: a case-control study. Lancet 2016; 387: 1531–1539.
Mlakar J, Korva M, Tul, N, et al. Zika virus associated with microcephaly. N Engl J Med. 2016; 374: 951–958.
World Health Organization. WHO Director-general summarizes the outcome of the Emergency Committee regarding clusters of microcephaly and Guillain–Barré syndrome. WHO, Geneva, February 2016. Available from: https://www.who.int/news/item/01-02-2016-who-director-general-summarizes-the-outcome-of-the-emergency-committee-regarding-clusters-of-microcephaly-and-guillain-barr%c3%a9-syndrome [accessed: February 18, 2021].
Giron S, Franke F, Decoppet A, et al. Vector-borne transmission of Zika virus in Europe, Southern France, August 2019. Euro Surveill. 2019; 24: 1900655.
Kim CR, Counotte M, Bernstein K, et al. Investigating the sexual transmission of Zika virus. Lancet Glob Health 2018; 6: e24–e25.
Musso D, Gubler DJ. Zika Virus. Clin Microbiol Rev. 2016; 29: 487–524.
Freitas DA, Souza-Santos R, Carvalho LM, et al. Congenital Zika syndrome: a systematic review. PLoS ONE 2020;15: e0242367.
Varjasi G, Póka R. Zika virus infection in pregnancy. [Zika-vírus-fertőzés terhességben.] Orv Hetil. 2017; 158: 563–571. [Hungarian]
European Centre for Disease Prevention and Control. Zika virus transmission worldwide. ECDC, Stockholm, 9 April 2019. Available from: https://www.ecdc.europa.eu/sites/portal/files/documents/zika-risk-assessment-9-april-2019.pdf [accessed: February 18, 2021].
World Health Organization. Dengue and severe Dengue. WHO, Geneva, 2021. Available from: https://www.who.int/news-room/fact-sheets/detail/dengue-and-severe-dengue [accessed: February 18, 2021].
Wilder-Smith A, Quam M, Sessions O, et al. The 2012 Dengue outbreak in Madeira: exploring the origins. Euro Surveill. 2014; 19: 20718. [Erratum: Euro Surveill. 2014; 19: 20725.]
Narayan R, Tripathi S. Intrinsic AD. The dark side of antibody dependent enhancement during Dengue infection. Front Cell Infect Microbiol. 2020; 10: 580096.
Yacoub S, Wills B. Dengue: an update for clinicians working in non-endemic areas. Clin Med (Lond). 2015; 15: 82–85.
Dissanayake HA, Seneviratne SL. Liver involvement in Dengue viral infections. Rev Med Virol. 2018; 28: e1971.
Thomas SJ, Yoon IK. A review of Dengvaxia®: development to deployment. Hum Vaccin Immunother. 2019; 15: 2295–2314.
Silva JV Jr, Ludwig-Begall LF, Oliveira-Filho EF, et al. A scoping review of Chikungunya virus infection: epidemiology, clinical characteristics, viral co-circulation complications, and control. Acta Trop. 2018; 188: 213–224.
Leparc-Goffart I, Nougairede A, Cassadou S, et al. Chikungunya in the Americas. Lancet 2014; 383: 514.
Amraoui F, Failloux AB. Chikungunya: an unexpected emergence in Europe. Curr Opin Virol. 2016; 21: 146–150.
Delisle E, Rousseau C, Broche B, et al. Chikungunya outbreak in Montpellier, France, September to October 2014. Euro Surveill. 2015; 20: 21108.
Calba C, Guerbois-Galla M, Franke F, et al. Preliminary report of an autochthonous Chikungunya outbreak in France, July to September 2017. Euro Surveill. 2017; 22: 17-00647.
Vairo F, Mammone A, Lanini S, et al., Chikungunya Lazio Outbreak Group. Local transmission of Chikungunya in Rome and the Lazio region, Italy. PLoS ONE 2018; 13: e0208896.
Venturi G, Di Luca M, Fortuna C, et al. Detection of a Chikungunya outbreak in Central Italy, August to September 2017. Euro Surveill. 2017; 22: 17-00646.
Javelle E, Ribera A, Degasne I, et al. Specific management of post-Chikungunya rheumatic disorders: a retrospective study of 159 cases in Reunion Island from 2006–2012. PLoS Negl Trop Dis. 2015; 9: e0003603.
Cerny T, Schwarz M, Schwarz U, et al. The range of neurological complications in Chikungunya fever. Neurocrit Care 2017; 27: 447–457.
Van den Bossche D, Cnops L, Van Esbroeck M. Recovery of Dengue virus from urine samples by real-time RT-PCR. Eur J Clin Microbiol Infect Dis. 2015; 34: 1361–1367.
Alagarasu K, Kakade MB, Bachal RV, et al. Use of whole blood over plasma enhances the detection of Dengue virus RNA: possible utility in Dengue vaccine trials. Arch Virol. 2021; 166: 587–591.
Bingham AM, Cone M, Mock V, et al. Comparison of test results for Zika virus RNA in urine, serum, and saliva specimens from persons with travel-associated Zika virus disease – Florida, 2016. MMWR Morb Mortal Wkly Rep. 2016; 65: 475–478.
Voermans JJ, Pas SD, van der Linden A, et al. Whole-blood testing for diagnosis of acute Zika virus infections in routine diagnostic setting. Emerg Infect Dis. 2019; 25: 1394–1396.
Mansuy JM, Lhomme S, Cazabat M, et al. Detection of Zika, Dengue and Chikungunya viruses using single-reaction multiplex real-time RT-PCR. Diagn Microbiol Infect Dis. 2018; 92: 284–287.
Comission implementing decision (EU) 2018/945 of 22 June 2018 on the communicable diseases and related special health issues to be covered by epidemiological surveillance as well as relevant case definitions. Official J EU 2018; 6.7: L 170. Available from: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32018D0945 [accessed: February 18, 2021].
Kassim FM, Izati MN, TgRogayah TA, et al. Use of Dengue NS1 antigen for early diagnosis of Dengue virus infection. Southeast Asian J Trop Med Public Health 2011; 42: 562–569.
Muller DA, Depelsenaire AC, Young PR. Clinical and laboratory diagnosis of Dengue virus infection. J Infect Dis. 2017; 215(Suppl 2): S89–S95.
Caglioti C, Lalle E, Castilletti C, et al. Chikungunya virus infection: an overview. New Microbiol. 2013; 36: 211–227.
European Centre for Disease Prevention and Control. Interim guidance for healthcare providers and Zika virus laboratory diagnosis. ECDC, Stockholm, 1 Apr 2016. Available from: https://www.ecdc.europa.eu/en/publications-data/interim-guidance-healthcare-providers-and-zika-virus-laboratory-diagnosis [accessed: February 18, 2021].
Nagy O, Nagy A, Tóth S, et al. Imported Zika virus infections in Hungary between 2016 and 2018. Acta Microbiol Immunol Hung. 2019; 66: 423–442.
European Centre for Disease Prevention and Control. Aedes albopictus – current known distribution. ECDC, Stockholm, May 2020. Available from: https://www.ecdc.europa.eu/en/publications-data/aedes-albopictus-current-known-distribution-may-2020 [accessed: February 18, 2021].
Driggers RW, Ho CY, Korhonen EM, et al. Zika virus infection with prolonged maternal viremia and fetal brain abnormalities. N Engl J Med. 2016; 374: 2142–2151.