Összefoglaló. A szerzők egy különleges pancreaselváltozás esetét ismertetik, melyben az acinusok neuroendokrin jellegű transzformációja diffúz, atípusos megjelenésű szigetsejtes hyperplasiával társult, valamint a pancreas mindhárom sejtvonalát (acinaris, ductalis, insularis) tartalmazó nodulusok képződtek. A komplex megjelenés ellenére a kórfolyamat nem járt endokrin tünetekkel. Esetünkben a kiváltó ok hátterében a struktúrák kóros progenitorsejt-differenciációja állhatott. Az irodalomban ilyen közlés eddig nem ismert. Orv Hetil. 2021; 162(6): 227–232.
Summary. The authors present a case of a peculiar pancreatic lesion, in which the neuroendocrine transformation of the acini was associated with a diffuse, atypical insular hyperplasia, and micronodules exhibiting trilineage differentiation. Despite the complex alteration, no endocrine symptoms were noted. The case may represent the result of an abnormal pancreatic differentiation raising the possibility of reprogramming of the progenitor cells. To the best of our knowledge, this is the first report of such a lesion in the literature. Orv Hetil. 2021; 162(6): 227–232.
Pan, FC, Wright C. Pancreas organogenesis: from bud to plexus to gland. Dev Dyn. 2011; 240: 530–565.
Fanjul M, Gmyr V, Sengenès C, et al. Evidence for epithelial–mesenchymal transition in adult human pancreatic exocrine cells. J Histochem Cytochem. 2010; 58: 807–823.
Minami K, Seino S. Pancreatic acinar-to-beta cell transdifferentiation in vitro. Front Biosci. 2008; 13: 5824–5837.
Cavelti-Weder C, Li W, Weir GC, et al. Direct lineage conversion of pancreatic exocrine to endocrine beta cells in vivo with defined factors. Methods Mol Biol. 2014; 1150: 247–262.
Li W, Nakanishi M, Zumsteg A, et al. In vivo reprogramming of pancreatic acinar cells to three islet endocrine subtypes. eLife 2014; 3: e01846.
Lemper M, Leuckx G, Heremans Y, et al. Reprogramming of human pancreatic exocrine cells to β-like cells. Cell Death Differ. 2015; 22: 1117–1130.
Xiao X, Guo P, Shiota C, et al. Neurogenin3 activation is not sufficient to direct duct-to-beta cell transdifferentiation in the adult pancreas. J Biol Chem. 2013; 288: 25297–25308.
Rotti PG, Xie W, Poudel A, et al. Pancreatic and islet remodeling in cystic fibrosis transmembrane conductance regulator (CFTR) knockout ferrets. Am J Pathol. 2018; 188: 876–890.
Kostromina E, Wang X, Han W. Altered islet morphology but normal islet secretory function in vitro in a mouse model with microvascular alterations in the pancreas. PLoS ONE 2013; 8: e71277.
Okada Y, Mori H, Tsutsumi A. Duct-acinar-islet cell tumor of the pancreas. Pathol Int. 1995; 45: 669–676.
Tanakaya K, Teramoto N, Konaga E, et al. Mixed duct-acinar-islet cell tumor of the pancreas: report of a case. Surg Today 2001; 31: 177–179.
Newman K, Stahl-Herz J, Kabiawu O, et al. Pancreatic carcinoma with multilineage (acinar, neuroendocrine, and ductal) differentiation. Int J Clin Exp Pathol. 2009; 2: 602–607.
Stelow EB, Shaco-Levy R, Bao F, et al. Pancreatic acinar cell carcinomas with prominent ductal differentiation: mixed acinar ductal carcinoma and mixed acinar endocrine ductal carcinoma. Am J Surg Pathol. 2010; 34: 510–518.
Anderson MJ, Kwong CA, Atieh M, et al. Mixed acinar-neuroendocrine-ductal carcinoma of the pancreas: a tale of three lineages. BMJ Case Rep. 2016; 2016: bcr2015213661.