View More View Less
  • 1 Cardiff University, Cardiff CF10 3AT, United Kingdom
  • 2 Mesopharma Kft., Budapest
  • 3 Salisbury NHS Foundation Trust, Salisbury SP2 8BJ, United Kingdom

Összefoglaló. A SARS-CoV-2 okozta megbetegedés (COVID–19) a cikk megírásáig a világon több mint 82 millió embert érintett, a halálos áldozatok száma 1,8 millió (2,2%). Hazánkban eddig 300 000 feletti esetszámot regisztráltak, a cikk megjelenésének idején már várhatóan több mint 10 000 halottal (3%). Habár a megbetegedésnek oki gyógyszeres terápiája egyelőre nincs, egyes antivirális szerek és a rekonvaleszcens plazma alkalmazása a tapasztalatok szerint csökkentik a vírusterhelést, és ezzel hozzájárulnak a beteg gyógyulásához. Az eddig példa nélküli epidemiológiai rendelkezések nem tudták megállítani, csak lelassítani a betegség terjedését, ezért a megelőzés tűnik az egyetlen, a közeljövőben tömegek számára is elérhető megoldásnak. A jelen cikk nem egy virológiai vagy biotechnológiai szakmunka, sokkal inkább egy összefoglaló házi- és általános orvosok számára, amely ismerteti a jelenleg engedélyezett, illetve a közeljövőben forgalomba kerülő védőoltások előnyeit és hátrányait a COVID–19 tágabb kontextusában. Írásunkban bemutatjuk a leggyakoribb álhíreket, rémhíreket is, valamint ezek cáfolatát is annak érdekében, hogy kollégáink felkészültebben tudják betegeiket informálni, valamint segíteni a vakcináció fontosságával kapcsolatos döntéshozatalt. Egy járvány megfékezésének legkézenfekvőbb módja a társadalmi szintű védettség megvalósítása. A nyájimmunitás kialakulása nélkül nagy valószínűséggel e jelenlegi pandémia sem állítható meg. Amennyiben egyéni és társadalmi szinten is vissza szeretnénk térni a vírus előtti életünkhöz, újra élvezve az akadálytalan áru- és kereskedelmi forgalom jelentette előnyöket, akkor a tömeges oltás tűnik a leghatékonyabb eszköznek ennek eléréséhez. A fertőző betegségek számának és mortalitásának a 20. században tapasztalt jelentős csökkenése egyértelműen a társadalmi szintű átoltottságnak, valamint a higiénés körülmények javulásának köszönhető. Az oltás ugyan önkéntes, de felvételének kérdése pandémiás helyzetben valószínűleg nemcsak egyéni döntés, de társadalmi felelősségvállalás kérdése is. Orv Hetil. 2021; 162(8): 283–292.

Summary. Out of more than 82 million people worldwide, 1.8 million (2.2%) succumbed to SARS-CoV-2 disease (COVID–19). In 2020, more than 300 000 cases were registered in Hungary, and by the time of publication of this article, the death toll would probably exceed 10 000 (3%). Currently no causative drug therapy is available, however, observational evidence suggests that certain antivirals and the use of convalescent plasma may change the disease course. The unprecedented, strict epidemiological provisions managed to slow down the spread of the disease though they could not stop it. It seems that prevention remains the only readily available option to beat COVID–19. This is not a virology or biotechnology paper, but an unbiased review for general practitioners, aiming to summarize the advantages/disadvantages of the (emergency) authorized and soon-to-be-launched vaccines in the wider context of COVID–19. We also intended to address and debunk the most common misconceptions, aiming to help both doctors and patients to make a fact-based, informed decision about vaccination. Herd immunity is paramount to combat COVID pandemic. Without population-level vaccination, we are unlikely to regain the quality of life, the freedom of travel and the unrestricted economy/commerce we enjoyed before. It is obvious that the significant reduction in morbity/mortality of infectious diseases in the 20th century was achieved through advancements in vaccinology and improved hygiene. Albeit voluntary, vaccination in a pandemic situation is probably not only an individual decision, but social responsibility as well. Orv Hetil. 2021; 162(8): 283–292.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1

    Cherry JD. The chronology of the 2002–2003 SARS mini pandemic. Paediatr Respir Rev. 2004; 5: 262–269.

  • 2

    Chen WH, Tao X, Agrawal AS, et al. Yeast-expressed SARS-CoV recombinant receptor-binding domain (RBD219-N1) formulated with aluminum hydroxide induces protective immunity and reduces immune enhancement. Vaccine 2020; 38: 7533–7541.

  • 3

    Nassar MS, Bakhrebah MA, Meo SA, et al. Middle East respiratory syndrome coronavirus (MERS-CoV) infection: epidemiology, pathogenesis and clinical characteristics. Eur Rev Med Pharmacol Sci. 2018; 22: 4956–4961.

  • 4

    Kaur N, Singh R, Dar Z, et al. Genetic comparison among various coronavirus strains for the identification of potential vaccine targets of SARS-CoV-2. Infect Genet Evol. 2020 Jul 31: 104490. . [Epub ahead of print]

    • Crossref
    • Export Citation
  • 5

    Stefanelli P, Faggioni G, Lo Presti A, et al. Whole genome and phylogenetic analysis of two SARS-CoV-2 strains isolated in Italy in January and February 2020: additional clues on multiple introductions and further circulation in Europe. Euro Surveill. 2020; 25: 2000305.

  • 6

    World Health Organization. Laboratory testing strategy recommendations for COVID-19: interim guidance. WHO, Geneva, 21 March 2020. Available from: https://apps.who.int/iris/handle/10665/331509.

  • 7

    Vandenberg O, Martiny D, Rochas O, et al. Considerations for diagnostic COVID-19 tests. Nat Rev Microbiol. 2020 Oct 14: 1–13. . [Epub ahead of print]

    • Crossref
    • Export Citation
  • 8

    Axell-House DB, Lavingia R, Rafferty M, et al. The estimation of diagnostic accuracy of tests for COVID-19: a scoping review. J Infect. 2020; 81: 681–697.

  • 9

    World Health Organization. Nucleic acid testing (NAT) technologies that use real-time polymerase chain reaction (RT-PCR) for detection of SARS-CoV-2. WHO, Geneva, 2020 Dec 14. Available from: https://www.who.int/news/item/14-12-2020-who-information-notice-for-ivd-users.

  • 10

    Public Health England. Understanding cycle threshold (Ct) in SARS-CoV-2 RT-PCR. A guide for health protection teams. PHE, London, October 2020. Available from: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/926410/Understanding_Cycle_Threshold__Ct__in_SARS-CoV-2_RT-PCR_.pdf.

  • 11

    European Centre of Disease Prevention and Control. Sequencing of SARS-CoV-2. Technical note. ECDC, Stockholm, 23 December 2020. Available from: https://www.ecdc.europa.eu/sites/default/files/documents/sequencing-of-SARS-CoV-2.pdf.

  • 12

    Kaushal S, Rajput AS, Bhattacharya S, et al. Estimating the herd immunity threshold by accounting for the hidden asymptomatics using a COVID-19 specific model. PLOS ONE 2020; 15: e0242132.

  • 13

    Mahase E. Vaccinating the UK: How the COVID vaccine was approved, and other questions answered. BMJ 2020; 371: m4759.

  • 14

    Food and Drug Administration. Vaccines and Related Biological Products Advisory Committee Meeting. Briefing document Pfizer-BioNTech COVID-19 Vaccine. FDA, Silver Spring, MD, December 10, 2020. Available from: https://www.fda.gov/media/144245/download.

  • 15

    Food and Drug Administration. Fact sheet for healthcare providers administering vaccine (vaccination providers). Emergency Use Authorisation (EUA) of the Moderna COVID-19 vaccine to prevent coronavirus disease 2019 (COVID-19). FDA, Silver Spring, MD, December, 2020. Available from: https://www.fda.gov/media/144637/download.

  • 16

    Knoll MD, Wonodi C. Oxford-AstraZeneca COVID-19 vaccine efficacy. Lancet 2021; 397: 72–74.

  • 17

    Birnbaum M, Rowland C, Ariès Q. Europe is paying less than U.S. for many coronavirus vaccines. The Washington Post, 19 December 2020. Available from: https://www.washingtonpost.com/world/eu-coronavirus-vaccines-cheaper-than-united-states/2020/12/18/06677e34-4139-11eb-b58b-1623f6267960_story.html.

  • 18

    World Health Organization. Draft landscape of COVID-19 candidate vaccines. WHO, Geneva, 15 January 2021. Available from: https://www.who.int/publications/m/item/draft-landscape-of-covid-19-candidate-vaccines.

  • 19

    Halabi S, Heinrich A, Omer SB. No-fault compensation for vaccine injury – the other side of equitable access to Covid-19 vaccines. N Engl J Med. 2020; 383: e125.

  • 20

    Davidson H. China’s COVID 19 vaccine. The Guardian, 20 November 2020. Available from: https://www.theguardian.com/world/2020/nov/20/china-has-given-almost-a-million-people-experimental-covid-vaccine-says-company.

  • 21

    ClinicalTrials.gov. A study to evaluate the efficacy, safety and immunogenicity of inactivated SARS-CoV-2 vaccines (Vero Cell) in healthy population aged 18 years old and above (COVID-19). Last update: 30 October 2020. Available from: https://clinicaltrials.gov/ct2/show/NCT04510207?term=united+arab+emirates&cond=covid+19&draw=2&rank=8.

  • 22

    ClinicalTrials.gov. A study looking at the efficacy, immune response, and safety of a COVID-19 vaccine in adults at risk for SARS-CoV-2. Last update: 8 January 2021. Available from: https://clinicaltrials.gov/ct2/show/NCT04611802?term=mexico&cond=covid+vaccine&draw=2&rank=1.

  • 23

    Cohen J. Russia’s claim of a successful COVID-19 vaccine doesn’t pass the ‘smell test,’ critics say. Science, 11 November 2020. Available at: https://www.sciencemag.org/news/2020/11/russia-s-claim-successful-covid-19-vaccine-doesn-t-pass-smell-test-critics-say.

  • 24

    ClinicalTrials.gov. An efficacy and safety clinical trial of an investigational COVID 19 vaccine (BBV152) in adult volunteers. Last update: 25 November 2020. Available from: https://clinicaltrials.gov/ct2/show/NCT04641481?term=vaccine&cond=Covid19&cntry=IN&draw=2&rank=2.

  • 25

    ClinicalTrials.gov. Clinical trial to assess safety and immunogenicity of Gam-COVID-Vac combined vector vaccine for severe acute respiratory syndrome coronavirus 2 (SARS-СoV-2) infection. Last update: 23 November 2020. Available from: https://www.clinicaltrials.gov/ct2/show/NCT04640233?term=sputnik&cond=Covid19&draw=2&rank=4.

  • 26

    Serum Institute of India. Available from: https://www.seruminstitute.com.

  • 27

    National Institutes of Health. Phase 3 trial of Novavax investigational COVID-19 vaccine. NIH, Bethesda, MD, 28 December 2020. Available from: https://www.nih.gov/news-events/news-releases/phase-3-trial-novavax-investigational-covid-19-vaccine-opens.

  • 28

    ClinicalTrials.gov. A study looking at the effectiveness, immune response, and safety of a COVID-19 vaccine in adults in the United Kingdom. Last update: 17 November 2020. Available from: https://www.clinicaltrials.gov/ct2/show/NCT04583995?term=novavax&cond=Covid19&draw=2.

  • 29

    Department of Health and Social Care. Statement from the UK Chief Medical Officers on the prioritisation of first doses of COVID-19 vaccines. Press release, 30 December 2020. Available from: https://www.gov.uk/government/news/statement-from-the-uk-chief-medical-officers-on-the-prioritisation-of-first-doses-of-covid-19-vaccines.

  • 30

    BBC News. Coronavirus: Israel leads vaccine race with 12% given jab. 3 January 2021. Available from: https://www.bbc.com/news/world-55514243.

  • 31

    Centers for Disease Control and Prevention. What is an adjuvant and why is it added to a vaccine. CDC, Atlanta, GA, 14 August 2020. Available from: https://www.cdc.gov/vaccinesafety/concerns/adjuvants.html.

  • 32

    Pardi N, Hogan MJ, Porter FW, et al. mRNA vaccines. A new era in vaccinology. Nat Rev Drug Discov. 2018; 17: 261–279.

  • 33

    Karikó K. In vitro transcribed mRNA therapeutics: Out of the shadows and into the spotlight. Mol Ther. 2019; 27: 691–692.

  • 34

    Dan JM, Mateus J, Kato Y, et al. Immunological memory to SARS-CoV-2 assessed for up to eight months after infection. BioRxiv 2020. 11. 15. Doi: https://doi.org/10.1101/2020.11.15.383323.

  • 35

    O Murchu E, Byrne P, Walsh KA, et al. Immune response following infection with SARS-CoV-2 and other coronaviruses: a rapid review. Rev Med Virol. 2020 Sep 23: e2162. . [Epub ahead of print]

    • Crossref
    • Export Citation
  • 36

    Anywaine Z, Whitworth H, Kaleebu P, et al. Safety and immunogenicity of a 2-dose heterologous vaccination regimen with Ad26. ZEBOV and MVA-BN-Filo Ebola vaccines: 12-month data from a phase 1 randomized clinical trial in Uganda and Tanzania. J Infect Dis. 2019; 220: 46–56.

  • 37

    Mahase E. Covid-19: Johnson and Johnson vaccine trial is paused because of unexplained illness in participant. BMJ 2020; 371: m3967.

  • 38

    ClinicalTrials.gov. A study to assess safety, tolerability, and immunogenicity of V591 (COVID-19 vaccine) in healthy participants (V591-001). Last update: 7 December 2020. Available from: https://www.clinicaltrials.gov/ct2/show/NCT04498247?term=merck&cond=Covid19&draw=2&rank=6.

  • 39

    Pattani A, Malcolm K. Mucosal vaccination. Available from: https://www.immunology.org/public-information/bitesized-immunology/vaccines-and-therapeutics/mucosal-vaccination.

  • 40

    Moreno-Fierros L, García-Silva I, Rosales-Mendoza S. Development of SARS-CoV-2 vaccines: should we focus on mucosal immunity? Expert Opin Biol Ther. 2020; 20: 831–836.

  • 41

    Hassan AO, Kafai NM, Dmitriev IP, et al. A single-dose intranasal ChAd vaccine protects upper and lower respiratory tracts against SARS-CoV-2. Cell 2020; 183: 169–184. e13.

  • 42

    ClinicalTrials.gov. Safety, tolerability and immunogenicity of INO-4800 for COVID-19 in healthy volunteers. Last update: 15 January 2021. Available from: https://clinicaltrials.gov/ct2/show/NCT04336410.

  • 43

    Kim E, Erdős G, Huang S, et al. Microneedle array delivered recombinant coronavirus vaccines: immunogenicity and rapid translational development. EbioMedicine (Lancet) 2020; 55: 102743.

  • 44

    Moorlag SJ, Arts RJ, van Crevel R, et al. Non-specific effects of BCG vaccine on viral infections. Clin Microbiol Infect. 2019; 25: 1473–1478.

  • 45

    Kinoshita M, Tanaka M. Impact of routine infant BCG vaccination on COVID-19. J Infect. 2020; 81: 625–633.

  • 46

    Wikipedia. Wolfgang Wodarg. Available from: https://en.wikipedia.org/wiki/Wolfgang_Wodarg.

  • 47

    Scopus preview. Yeadon, Michael. Available from: https://www.scopus.com/authid/detail.uri?authorId=7006032026.

  • 48

    Scopus preview. Lee, Sinhang. Available from: https://www.scopus.com/authid/detail.uri?authorId=56529645000.

  • 49

    Lee SH. Testing for SARS-CoV-2 in cellular components by routine nested RT-PCR followed by DNA sequencing. Int J Geriatr Rehab. 2020; 2: 69–96.

  • 50

    Droshi P. Will Covid-19 vaccines save lives? Current trials aren’t designed to tell us. BMJ 2020; 371: m4037.

  • 51

    Wang L, Zhu L, Zhu H. Efficacy of varicella (VZV) vaccination: an update for the clinician. Adv Vaccines 2016; 4: 20–31.

  • 52

    Dawood FS, Chung JR, Kim SS, et al. Interim estimates of 2019-20 seasonal influenza vaccine effectiveness – United States, February 2020. Morb Mortal Wkly Rep. 2020; 69: 177–182.

  • 53

    Jang HJ, Shin CY, Kim KB. Safety evaluation of polyethylene glycol (PEG) compounds for cosmetic use. Toxicol Res. 2015; 31: 105–136.

  • 54

    Zhang P, Sun F, Liu S, et al. Anti-PEG antibodies in the clinic: current issues and beyond PEGylation. J Control Release 2016; 244: 184–193.

  • 55

    Dupuy B. No evidence that COVID-19 vaccine results in sterilization. AP News, 8 December 2020. Available from: https://apnews.com/article/fact-checking-9856420671.

  • 56

    El País. La madre de la vacuna contra la covid: “En verano podremos, probablemente, volver a la vida normal”. 27 December 2020. Available from: https://elpais.com/ciencia/2020-12-26/la-madre-de-la-vacuna-contra-la-covid-en-verano-podremos-probablemente-volver-a-la-vida-normal.html. [Spanish]

  • 57

    Lee WS, Wheatley AK, Kent SJ, et al. Antibody-dependent enhancement and SARS-CoV-2 vaccines and therapies. Nat Microbiol. 2020; 5: 1185–1191.

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Oct 2020 0 0 0
Nov 2020 0 0 0
Dec 2020 0 0 0
Jan 2021 0 0 0
Feb 2021 0 297 360
Mar 2021 0 189 351
Apr 2021 0 57 155