View More View Less
  • 1 Pécsi Tudományegyetem, Egészségtudományi Kar, Egészségbiztosítási Intézet, Pécs, Vörösmarty u. 3., 7621
  • | 2 Pécsi Tudományegyetem, Egészségtudományi Kar, Real World & Big Data Egészség-gazdaságtani Kutatóközpont, Pécs
  • | 3 Pécsi Tudományegyetem, Általános Orvostudományi Kar, Klinikai Központ, Laboratóriumi Medicina Intézet, Pécs
  • | 4 Pécsi Tudományegyetem, Szentágothai János Kutatóközpont, Pécs
Open access
  • 1

    Hessel F. Burden of disease. In: Kirch W. (ed.) Encyclopedia of public health. Springer, Dordrecht, 2008. Available from: https://doi.org/10.1007/978-1-4020-5614-7_297 [accessed: January 2, 2021].

  • 2

    Murray CJ, Lopez AD. The global burden of disease. A comprehensive assessment of mortality and disability from diseases, injuries, and risk factors in 1990 and projected to 2020. Harvard University Press, Boston, 1996.

  • 3

    GBD 2017 Causes of Death Collaborators; Roth GA, Abate D, Abate KH, et al. Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 2018; 392: 1736–1788. [Erratum: Lancet 2018; 392: 2170.] [Erratum: Lancet 2019; 393: e44.]

  • 4

    Global Health Estimates 2016: Disease burden by cause, age, sex, by country and by region, 2000–2016. World Health Organization, Geneva, 2018.

  • 5

    Global Burden of Disease Study 2019. Lancet 2020; 396: 1129–1306.

  • 6

    GBD 2019 Diseases and Injuries Collaborators; Vos T, Lim SS, Afshin A, et al. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet 2020; 396: 1204–1222.

  • 7

    Eaglehouse YL, Park AB, Georg MW, et al. Consolidation of cancer registry and administrative claims data on cancer diagnosis and treatment in the US Military Health System. JCO Clin Cancer Inform. 2020; 4: 906–917.

  • 8

    Allen AM, Van Houten HK, Sangaralingham LR, et al. Healthcare cost and utilization in nonalcoholic fatty liver disease: real-world data from a large U. S. Claims Database. Hepatology 2018; 68: 2230–2238.

  • 9

    Eyding J, Bartig D, Weber R, et al. Inpatient TIA and stroke care in adult patients in Germany – retrospective analysis of nationwide administrative data sets of 2011 to 2017. Neurol Res Pract. 2019; 1: 39.

  • 10

    Langner I, Ohlmeier C, Haug U, et al. Implementation of an algorithm for the identification of breast cancer deaths in German health insurance claims data: a validation study based on a record linkage with administrative mortality data. BMJ Open 2019; 9: e026834.

  • 11

    Tuppin P, Rivière S, Rigault A, et al. Prevalence and economic burden of cardiovascular diseases in France in 2013 according to the national health insurance scheme database. Arch Cardiovasc Dis. 2016; 109: 399–411.

  • 12

    Tuppin P, Rudant J, Constantinou P, et al. Value of a national administrative database to guide public decisions: from the système national d’information interrégimes de l’Assurance Maladie (SNIIRAM) to the système national des données de santé (SNDS) in France. Rev Epidemiol Sante Publique 2017; 65(Suppl 4): S149–S167.

  • 13

    Ohbe H, Matsui H, Fushimi K, et al. Epidemiology of chronic critical illness in Japan: a nationwide inpatient database study. Crit Care Med. 2021; 49: 70–78.

  • 14

    Nishioka Y, Noda T, Okada S, et al. Incidence and seasonality of type 1 diabetes: a population-based 3-year cohort study using the national database in Japan. BMJ Open Diabetes Res Care 2020; 8: e001262.

  • 15

    Ombelet F, Goossens E, Willems R, et al. Creating the BELgian COngenital heart disease database combining administrative and clinical data (BELCODAC): rationale, design and methodology. Int J Cardiol. 2020; 316: 72–78.

  • 16

    Bakirtzis C, Grigoriadou E, Boziki MK, et al. The administrative prevalence of multiple sclerosis in Greece on the basis of a nationwide prescription database. Front Neurol. 2020; 11: 1012.

  • 17

    Banks H, Torbica A, Valzania C, et al. Five year trends (2008–2012) in cardiac implantable electrical device utilization in five European nations: a case study in cross-country comparisons using administrative databases. Europace 2018; 20: 643–653.

  • 18

    Gresz M. The National Health Insurance database of Hungary from the viewpoint of a health insurance physician. [Az Országos Egészségbiztosítási Pénztár adatbázisa az egészségbiztosítási szakorvos szemével.] Orv Hetil. 2012; 153: 1234–1239. [Hungarian]

  • 19

    Gresz M. The paranoia of data collection in Hungary and the health system. [Az adatgyűjtés paranoiája Magyarországon és az egészségügy.] Orv Hetil. 2012; 153: 1158–1162. [Hungarian]

  • 20

    Fadgyas-Freyler P. Hungarian health resource allocation from the viewpoint of the English methodology. [A magyar egészségügyi forráselosztás vizsgálata az angliai módszerrel.] Orv Hetil. 2018; 159: 183–191. [Hungarian]

  • 21

    Boncz I, Evetovits T, Dózsa Cs, et al. The Hungarian Care Managing Organization Pilot Program. Value Health Reg Issues 2015; 7: 27–33.

  • 22

    Eisingerné Balassa B, Csákvári T, Ágoston I. Health insurance pharmaceutical expenditures in Hungary. [Az egészségbiztosítási gyógyszerkiadások alakulása Magyarországon.] Orv Hetil. 2019; 160(Suppl 1): 49–54. [Hungarian]

  • 23

    Kovács G. Changes in disability, reduced working ability and rehabilitation benefits in Hungary between 1990 and 2015. [A rokkantság, megváltozott munkaképesség, rehabilitációs ellátások változása Magyarországon 1990 és 2015 között.] Orv Hetil. 2019; 160(Suppl 1): 29–36. [Hungarian]

  • 24

    Balkányi L. International Classification of Diseases (ICD), 11th revision. [Betegségek Nemzetközi Osztályozása, 11. verzió.] IME 2019; 18: 11–12. [Hungarian]

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 81 81 11
PDF Downloads 114 114 21