Összefoglaló. Egészséges terhességben mintegy két literrel nő a vér mennyisége. A vérvolumen növekedésének elmaradása, de extrém mértékű növekedése is súlyos következményekkel szövődhet. Ma már nem kétséges, hogy a praeeclampsia, mely a várandósság második felében magas vérnyomás és proteinuria együttes megjelenése, nem egységes kórkép. A korai kezdetű (34. hét előtt jelentkező), hypovolaemiával járó praeeclampsia placentaris eredetű, melyben az endothelium sérülése vezet a magas vérnyomásért és szervkárosodásokért felelős vasoconstrictióhoz és microthrombosisok megjelenéséhez. Magzati sorvadás, oligohydramnion alakul ki a lepényi elégtelenség miatt. A kórkép végső stádiumában magzati elhalás, eclampsia, lepényleválás várható. Az állapot kezelésében rendkívül korlátozottak a lehetőségek; a cél, körültekintő monitorizálás és az állapot stabilizálása mellett, várakozás a magzati tüdő érettségének fokozódása érdekében. A késői kezdetű, nagy perctérfogattal járó praeeclampsia anyai betegség: ebben az obesitasnak kockázati szerepe van, mivel önmagában is hajlamosít fokozott folyadék-visszatartásra, magas vérnyomásra és mérsékelt endothelkárosodásra. A kezdeti lábszár-, majd generalizálódó oedema mellett nemritkán jelentkezik magas vérnyomás és az esetek egy részében proteinuria is, mely ekkor már megfelel a praeeclampsia kritériumának. A magzat súlya normális vagy átlag feletti. Az extrém fokú folyadékretenció, valószínűleg a parenchymalis pangás miatt, asciteshez, eclampsiához, lepényleváláshoz vezethet. A hypervolaemiával járó praeeclampsia kezelésében a diuretikus furoszemidkezelés ígéretesnek tűnik. Orv Hetil. 2022; 163(17): 663–669.
Summary. During normal pregnancy, blood volume increases by nearly two liters. Distinctively, the absence and also the extreme extent regarding the volume expansion are likely accompanied with serious conditions. Undoubtedly, preeclampsia, defined as the appearance of hypertension and proteinuria during the second half of pregnancy, is not a homogenous disease. The early onset which begins prior to the 34th week, is characteristically a hypovolemia-associated form and depicts the placental origination, in which endothelial damage leads to hypertension and organ damage due to vasoconstriction and microthrombosis. Fetal blood supply progressively worsens due to placental insufficiency. The outcome of this condition often leads to fetal death, eclampsia, or placental abruption. Management is confined to a diligent prolongation of pregnancy to accomplish improved neonatal pulmonary function. The late onset form, associated with high cardiac output, is a maternal disease, in which obesity is a risk factor since it predisposes individuals to enhanced water retention, hypertension, and a weakened endothelial dysfunction. Initially, low extremity edema oftentimes progresses to a generalized form and frequently results in hypertension. In several cases proteinuria appears. This condition entirely meets the preeclampsia criteria. Fetal weight is normal or frequently over the average. It is very likely, the increasing parenchymal stasis will lead to ascites, eclampsia, or placental abruption. During the management of this hypervolemia-associated preeclampsia, the administration of diuretic furosemide treatment seemingly offers promise. Orv Hetil. 2022; 163(17): 663–669.
Paulin F, Pajor A. Gestational hypertensions. In: Papp Z. (ed.) Textbook of obstetrics and gynecology. [Terhességi hypertoniák. In: Papp Z. (szerk.) A szülészet-nőgyógyászat tankönyve.] Semmelweis Kiadó, Budapest, 2009; pp. 208–209. [Hungarian]
Lain KY, Roberts JM. Contemporary concepts of the pathogenesis and management of preeclampsia. JAMA 2002; 287: 1383–1386.
Easterling TR, Benedetti TJ, Schmucker BC, et al. Maternal hemodynamics in normal and preeclamptic pregnancies: a longitudinal study. Obstet Gynecol. 1990; 76: 1061–1069.
Vatten LJ, Skjaerven R. Is pre-eclampsia more than one disease? BJOG 2004; 111: 298–302.
Belfort MA, Grunewald C, Saade GR, et al. Preeclampsia may cause both overperfusion and underperfusion of the brain: a cerebral perfusion-based model. Acta Obstet Gynecol Scand. 1999; 78: 586–591.
Ness RB, Roberts JM. Heterogeneous causes constituting the single syndrome of preeclampsia: a hypothesis and its implications. Am J Obstet Gynecol. 1996; 175: 1365–1370.
Tamás P, Veszprémi B, Szabó I. Distinct fetal growth is associated with distinct gestational indices in preeclampsia. [Eltérő magzati növekedés és terhességi mutatók praeeclampsiában.] Magy Nőorv L. 2003; 66: 211–215. [Hungarian]
Tamás P, Hantosi E, Bódis J. Hypertensive disorders of pregnancy. Theory of hypoperfusion and hyperperfusion types of preeclampsia. Gynecol Perinatol. 2010; 19: 255–260.
von Dadelszen P, Magee LA, Roberts JM. Subclassification of preeclampsia. Hypertens Pregnancy 2003; 22: 143–148.
Tamás P, Ifi Z, Szilágyi A. Discordant clinical characteristics suggest different pathogesesis of preeclampsia. J Perinat Med. 2007; 35(Suppl. 2): 278.
Phillips JK, Janowiak M, Badger GJ, et al. Evidence for distinct preterm and term phenotypes of preeclampsia. J Matern Fetal Neonatal Med. 2010; 23: 622–626.
Raymond D, Peterson E. A critical review of early-onset and late-onset preeclampsia. Obstet Gynecol Surv. 2011; 66: 497–507.
Masini G, Foo LF, Tay J, et al. Preeclampsia has two phenotypes which require different treatment strategies. Am J Obstet Gynecol. 2022; 226(2 Suppl): S1006–S1018.
Valensise H, Vasapollo B, Gagliardi G, et al. Early and late preeclampsia: two different maternal hemodynamic states in the latent phase of the disease. Hypertension 2008; 52: 873–880.
Sohlberg S, Mulic-Lutvica A, Lindgren P, et al. Placental perfusion in normal pregnancy and early and late preeclampsia: a magnetic resonance imaging study. Placenta 2014; 35: 202–206.
Herzog EM, Eggink AJ, Reijnierse A, et al. Impact of early- and late-onset preeclampsia on features of placental and newborn vascular health. Placenta 2017; 49: 72–79.
Pillay P, Vatish M, Duarte R, et al. Exosomal microRNA profiling in early and late onset preeclamptic pregnant women reflects pathophysiology. Int J Nanomedicine 2019; 14: 5637–5657.
Teoh SS, Zhao M, Wang Y, et al. Serum HtrA1 is differentially regulated between early-onset and late-onset preeclampsia. Placenta 2015; 36: 990–995.
Sanhal CY, Can Kavcar M, Yucel A, et al. Comparison of plasma fetuin A levels in patients with early-onset pre-eclampsia vs late-onset pre-eclampsia. Eur J Obstet Gynecol Reprod Biol. 2016; 200: 108–112.
Weiner CP, Lizasoain I, Baylis SA, et al. Induction of calcium-dependent nitric oxide synthases by sex hormones. Proc Natl Acad Sci USA 1994; 91: 5212–5216.
Hermenegildo C, Oviedo PJ, García-Martínez MC, et al. Progestogens stimulate prostacyclin production by human endothelial cells. Hum Reprod. 2005; 20: 1554–1561.
Guerra DD, Hurt KJ. Gasotransmitters in pregnancy: from conception to uterine involution. Biol Reprod. 2019; 101: 4–25.
Hsueh WA, Luetscher JA, Carlson EJ, et al. Changes in active and inactive renin throughout pregnancy. J Clin Endocrinol Metab. 1982; 54: 1010–1016.
Larciprete G, Valensise H, Vasapollo B, et al. Body composition during normal pregnancy: reference ranges. Acta Diabetol. 2003; 40(Suppl 1): S225–S232.
Baker ME, Katsu Y. Progesterone: an enigmatic ligand for the mineralocorticoid receptor. Biochem Pharmacol. 2020; 177: 113976.
Meah VL, Cockcroft JR, Backx K, et al. Cardiac output and related haemodynamics during pregnancy: a series of meta-analyses. Heart 2016: 102: 518–526.
Than NG, Hahn S, Rossi SW, et al. Editorial: Fetal-maternal immune interactions in pregnancy. Front Immunol. 2019; 10: 2729.
Meggyes M, Miko E, Lajko A, et al. Involvement of the PD-1/PD-L1 co-inhibitory pathway in the pathogenesis of the inflammatory stage of early-onset preeclampsia. Int J Mol Sci. 2019; 20: 583–592.
Ives CW, Sinkey R, Rajapreyar I, et al. Preeclampsia. Pathophysiology and clinical presentations: JACC state-of-the-art review. J Am Coll Cardiol. 2020; 76: 1690–1702.
Weissgerber TL, Garcia-Valencia O, Milic NM, et al. Early onset preeclampsia is associated with glycocalyx degradation and reduced microvascular perfusion. J Am Heart Assoc. 2019; 8: e010647.
Salsoso R, Farías M, Gutiérrez J, et al. Adenosine and preeclampsia. Mol Aspects Med. 2017; 55: 126–139.
Hammer ES, Cipolla MJ. Cerebrovascular dyspution in preeclamptic pregnancies. Curr Hypertens Rep. 2015; 17: 64–76.
Boeldt DS, Bird IM. Vascular adaptation in pregnancy and endothelial dysfunction in preeclampsia. J Endocrinol. 2017; 232: R27–R44.
Easterling TR, Benedetti TJ, Carlson KC, et al. The effect of hemodynamics on fetal growth in hypertensive pregnancies. Am J Obstet Gynecol. 1991; 165: 902–906.
Tamás P, Hantosi E, Menyhárt Cs, et al. Fetal birth weight correlates to maternal cardiac output. J Matern Fetal Neonatal Med. 2010; 23: 633.
Flythe JE, Bansal N.The relationship of volume overload and its control to hypertension in hemodialysis patients. Semin Dial. 2019; 32: 500–506.
Puschett JB, Agunanne E, Uddin MN. Marinobufagenin, resibufogenin and preeclampsia. Biochim Biophys Acta 2010; 1802: 1246–1253.
Ruhstaller KE, Bastek JA, Thomas A, et al. The effect of early excessive weight gain on the development of hypertension in pregnancy. Am J Perinatol. 2016; 33: 1205–1210.
Macdonald-Wallis C, Tilling K, Fraser A, et al. Gestational weight gain as a risk factor for hypertensive disorders of pregnancy. Am J Obstet Gynecol. 2013; 209: 327.e1–e17.
Haslam DW, James WP. Obesity. Lancet 2005; 366: 1197–1209.
Poirier P, Giles TD, Bray GA, et al. Obesity and cardiovascular disease: pathophysiology, evaluation, and effect of weight loss. Arterioscler Thromb Vasc Biol. 2006, 26: 968–976.
Eckel RH, Grundy SM, Zimmet PZ. The metabolic syndrome. Lancet 2005; 365: 1415–1428.
Gyselaers W. Maternal venous hemodynamic dysfunction in proteinuric gestational hypertension: evidence and implications. J Clin Med. 2019; 8: 335.
Roberge S, Bujold E, Nicolaides KH. Aspirin for the prevention of preterm and term preeclampsia: systematic review and metaanalysis. Am J Obstet Gynecol. 2018; 218: 287–293.e1.
Webster K, Fishburn S, Maresh M, et al. Diagnosis and management of hypertension in pregnancy: summary of updated NICE guidance. BMJ 2019; 366: I5119.
Di Pasquo E, Ghi T, Dall’Asta A, et al. Maternal cardiac parameters can help in differentiating the clinical profile of preeclampsia and in predicting progression from mild to severe forms. Am J Obstet Gynecol. 2019; 221: 633.e1–633.e9.
McLaughlin K, Scholten RR, Kingdom JC, et al. Should maternal hemodynamics guide antihypertensive therapy in preeclampsia? Hypertension 2018; 71: 550–556.
Magee LA, Pels A, Helewa M, et al. Diagnosis, evaluation, and management of the hypertensive disorders of pregnancy: executive summary. J Obstet Gynaecol Can. 2014; 36: 416–441.
Tay J, Foo L, Masini G, et al. Early and late preeclampsia are characterized by high cardiac output, but in the presence of fetal growth restriction, cardiac output is low: insights from a retrospective study. Am J Obstet Gynecol. 2018; 218: 517.e1–517.e12.
Tamás P, Hantosi E, Farkas B, et al. Preliminary study of the effects of furosemide on blood pressure during late-onset preeclampsia in patients with high cardiac output. Int J Gynaecol Obstet. 2017; 136: 87–90.