Összefoglaló. A sikeres fogantatás, beágyazódás és terhesség komplex és szervezett kommunikációt igényel az embrió (allograft) és az anya (gazda) immunrendszere között. A különböző leukocyta-alcsoportok fontos szerepet játszanak az immunválasz szervezésében a magzati–anyai határfelületen. Vannak bizonyos hasonlóságok a tumorsejteknek az immunrendszert kijátszó kóros és az embrionális eredetű trophoblastsejteknek az anyai deciduába irányuló fiziológiás inváziója között. A decidualis vagy uterinalis természetes ölősejtek a természetes ölősejtek speciális részhalmaza, és a macrophagokkal és a dendritikus sejtekkel együtt a veleszületett immunrendszer részét képezik, ezért ők az első immunsejtek, amelyek kapcsolatba lépnek bármely behatolóval, legyen az daganat vagy embrionális szövet. Érdekes módon a decidualis természetes ölősejtek nemcsak nem támadják meg az invazív trophoblastsejteket, hanem kifejezetten elősegítik azok progresszióját. Angiogenikus aktivitásuk megkönnyíti és koordinálja a kialakuló méhlepény helyi vascularis átalakulását. Dolgozatunkban áttekintjük a trophoblastsejtek és a decidualis természetes ölősejtek kölcsönhatásait, a decidualis természetes ölősejtek szerepét a decidua vascularisatiójában és immunháztartásában. Orv Hetil. 2022; 163(19): 734–742.
Summary. Successful conception, implantation and pregnancy require a complex and organized communication between the embryonal (allograft) and the maternal (host) immune system. Different leukocyte subsets have an important role in orchestrating the immune response at the fetal-maternal interface. There are certain similarities between the immune invasion of tumor cells and the physiological invasion of the trophoblastic cells of embryonic origin into the maternal decidua. The decidual natural killer cells are a special subset of natural killer cells and alongside with macrophages and dendritic cells, they are part of the innate immune system therefore they are the first immune cells contacting any intruder whether it is a tumor or embryonic tissue. Interestingly decidual natural killer cells not only do not eliminate invasive trophoblastic cells, but specifically promote their progression. Their angiogenic activity facilitates and coordinates local vascular remodeling of the forming placenta. In this article we review the different nature of trophoblastic cell and decidual natural killer cell interaction, the role of decidual natural killer cells in the vascularization and immune homeostasis of the decidua. Orv Hetil. 2022; 163(19): 734–742.
Fülöp V. (ed.) New horizons of immunology in human reproduction. [Az immunológia időszerű kérdései a humánreprodukcióban.] Semmelweis Kiadó, Budapest, 2008. [Hungarian]
Meza Guzman LG, Keating N, Nicholson SE. Natural killer cells: tumor surveillance and signaling. Cancers (Basel) 2020; 12: 952.
Manaster I, Mizrahi S, Goldman-Wohl D, et al. Endometrial NK cells are special immature cells that await pregnancy. J Immunol. 2008; 181: 1869–1876.
Vivier E, Raulet DH, Moretta A, et al. Innate or adaptive immunity? The example of natural killer cells. Science 2011; 331: 44–49.
Lima PD, Zhang J, Dunk C, et al. Leukocyte driven-decidual angiogenesis in early pregnancy. Cell Mol Immunol. 2014; 11: 522–537.
Koopman LA, Kopcow HD, Rybalov B, et al. Human decidual natural killer cells are a unique NK cell subset with immunomodulatory potential. J Exp Med. 2003; 198: 1201–1212.
Moffett-King A. Natural killer cells and pregnancy. Nat Rev Immunol. 2002; 2: 656–663.
Tabiasco J, Rabot M, Aguerre-Girr M. et al. Human decidual NK cells: unique phenotype and functional properties – a review. Placenta 2006; 27 (Suppl A): S34–S39.
Cartwright JE, Fraser R, Leslie K. Remodelling at the maternal-fetal interface: relevance to human pregnancy disorders. Reproduction 2010; 140: 803–813.
Lunghi L, Ferretti ME, Medici S, et al. Control of human trophoblast function. Reprod Biol Endocrinol. 2007; 5: 6.
Mor G, Cardenas I, Abrahams V, et al. Inflammation and pregnancy: the role of the immune system at the implantation site. Ann N Y Acad Sci. 2011; 1221: 80–87.
Mor G, Cardenas I. The immune system in pregnancy: a unique complexity. Am J Reprod Immunol. 2010; 63: 425–433.
Walker LS. EFIS Lecture: Understanding the CTLA-4 checkpoint in the maintenance of immune homeostasis. Immunol Lett. 2017; 184: 43–50.
Miko E, Meggyes M, Doba K, et al. Immune checkpoint molecules in reproductive immunology. Front Immunol. 2019; 10: 846.
Ndhlovu LC, Lopez-Vergès S, Barbour JD, et al. Tim-3 marks human natural killer cell maturation and suppresses cell-mediated cytotoxicity. Blood 2012; 119: 3734–3743.
Gleason MK, Lenvik TR, McCullar V, et al. Tim-3 is an inducible human natural killer cell receptor that enhances interferon gamma production in response to galectin-9. Blood 2012; 119: 3064–3072.
Bartmann C, Segerer SE, Rieger L, et al. Quantification of the predominant immune cell populations in decidua throughout human pregnancy. Am J Reprod Immunol. 2014; 71: 109–119.
Pesce S, Greppi M, Grossi F, et al. PD/1-PD-Ls checkpoint: insight on the potential role of NK cells. Front Immunol. 2019; 10: 1242.
Balogh A, Tóth E, Romero R, et al. Placental galectins are key players in regulating the maternal adaptive immune response. Front Immunol. 2019; 10: 1240.
Enninga EA, Harrington SM, Creedon DJ, et al. Immune checkpoint molecules soluble program death ligand 1 and galectin-9 are increased in pregnancy. Am J Reprod Immunol. 2018; 79: e12795.
Das M, Zhu C, Kuchroo VK. Tim-3 and its role in regulating anti-tumor immunity. Immunol Rev. 2017; 276: 97–111.
James JL, Stone PR, Chamley LW. The isolation and characterization of a population of extravillous trophoblast progenitors from first trimester human placenta. Hum Reprod. 2007; 22: 2111–2119.
Wang M, Xu Y, Wang P, et al. Galectin-14 promotes trophoblast migration and invasion by upregulating the expression of MMP-9 and N-cadherin. Front Cell Dev Biol. 2021; 9: 645658.
Knöfler M. Critical growth factors and signalling pathways controlling human trophoblast invasion. Int J Dev Biol. 2010; 54: 269–280.
Wahl SM. Transforming growth factor beta: the good, the bad, and the ugly. J Exp Med. 1994; 180: 1587–1590.
James JL, Stone PR, Chamley LW. The regulation of trophoblast differentiation by oxygen in the first trimester of pregnancy. Hum Reprod Update 2006; 12: 137–144.
Hanna J, Goldman-Wohl D, Hamani Y, et al. Decidual NK cells regulate key developmental processes at the human fetal-maternal interface. Nat Med. 2006; 12: 1065–1074.
Li XF, Charnock-Jones DS, Zhang E, et al. Angiogenic growth factor messenger ribonucleic acids in uterine natural killer cells. J Clin Endocrinol Metab. 2001; 86: 1823–1834.
Brosens I, Robertson WB, Dixon HG. The physiological response of the vessels of the placental bed to normal pregnancy. J Pathol Bacteriol. 1967; 93: 569–579.
Pijnenborg R, Vercruysse L, Hanssens M. The uterine spiral arteries in human pregnancy: facts and controversies. Placenta 2006; 27: 939–958.
Kaufmann P, Black S, Huppertz B. Endovascular trophoblast invasion: implications for the pathogenesis of intrauterine growth retardation and preeclampsia. Biol Reprod. 2003; 69: 1–7.
Smith SD, Dunk CE, Aplin JD, et al. Evidence for immune cell involvement in decidual spiral arteriole remodeling in early human pregnancy. Am J Pathol. 2009; 174: 1959–1971.
Than NG, Romero R, Balogh A, et al. Galectins: double-edged swords in the cross-roads of pregnancy complications and female reproductive tract inflammation and neoplasia. J Pathol Transl Med. 2015; 49: 181–208.
Kolundžić N, Ćujić D, Abu Rabi T, et al. Galectin signature of the choriocarcinoma JAr cells: galectin-1 as a modulator of invasiveness in vitro. Mol Reprod Dev. 2015; 82: 765–773.
Jeschke U, Hutter S, Heublein S, et al. Expression and function of galectins in the endometrium and at the human feto-maternal interface. Placenta 2013; 34: 863–872.
Blidner AG, Rabinovich GA. ‘Sweetening’ pregnancy: galectins at the fetomaternal interface. Am J Reprod Immunol. 2013; 69: 369–382.
Meggyes M, Miko E, Polgar B, et al. Peripheral blood TIM-3 positive NK and CD8+ T cells throughout pregnancy: TIM-3/galectin-9 interaction and its possible role during pregnancy. PLoS ONE 2014; 9: e92371.
Sun J, Yang M, Ban Y, et al. Tim-3 is upregulated in NK cells during early pregnancy and inhibits NK cytotoxicity toward trophoblast in galectin-9 dependent pathway. PLoS ONE 2016; 11: e0147186.
Schroder K, Hertzog PJ, Ravasi T, et al. Interferon-gamma: an overview of signals, mechanisms and functions. J Leukoc Biol. 2004; 75: 163–189.
Melsted WN, Matzen SH, Andersen MH, et al. The choriocarcinoma cell line JEG-3 upregulates regulatory T cell phenotypes and modulates pro-inflammatory cytokines through HLA-G. Cell Immunol. 2018; 324: 14–23.
Fülöp V, Szigetvári I, Szepesi J, et al. Detection of gamma-interferon mRNA in JEG-3 choriocarcinoma cell line by means of polymerase chain reaction. [A gamma-interferon mRNS kimutatása JEG-3 choriocarcinoma sejtvonalban polimeráz láncreakcióval.] Orv Hetil. 1994; 135: 1027–1030. [Hungarian]
Carosella ED, HoWangYin KY, Favier B, et al. HLA-G-dependent suppressor cells: diverse by nature, function, and significance. Hum Immunol. 2008; 69: 700–707.
Aghaeepour N, Ganio EA, Mcilwain D, et al. An immune clock of human pregnancy. Sci Immunol. 2017; 2: eaan2946.
Small HY, Cornelius DC, Guzik TJ, et al. Natural killer cells in placentation and cancer: Implications for hypertension during pregnancy. Placenta 2017; 56: 59–64.
von Rango U. Fetal tolerance in human pregnancy – a crucial balance between acceptance and limitation of trophoblast invasion. Immunol Lett. 2008; 115: 21–32.
Mariotti FR, Quatrini L, Munari E, et al. Inhibitory checkpoints in human natural killer cells: IUPHAR Review 28. Br J Pharmacol. 2020; 177: 2889–2903.
Chetry M, Thapa S, Hu X, et al. The role of galectins in tumor progression, treatment and prognosis of gynecological cancers. J Cancer 2018; 9: 4742–4755.
Mittica G, Genta S, Aglietta M, et al. Immune checkpoint inhibitors: a new opportunity in the treatment of ovarian cancer? Int J Mol Sci. 2016; 17: e1169.
Klymenko Y, Nephew KP. Epigenetic crosstalk between the tumor microenvironment and ovarian cancer cells: a therapeutic road less traveled. Cancers (Basel) 2018; 10: 295.
Du W, Yang M, Turner A, et al. TIM-3 as a target for cancer immunotherapy and mechanisms of action. Int J Mol Sci. 2017; 18: 645.