Összefoglaló. Bevezetés: A cukorbetegségben nő a simaizmok tónusa, és megváltozik az elasztin és a kollagén szerkezete. Mivel a tüdőszövetben ezek a strukturális elemek meghatározóak, a cukorbetegség várhatóan módosítja a légutak és a tüdőszövet mechanikai és funkcionális viselkedését. Célkitűzés: Vizsgálatunk során diabetesben szenvedő, elhízott és nem elhízott betegeink körében tanulmányoztuk a légzésmechanikai elváltozásokat és a gázcserefunkciót. Módszer: Elektív szívsebészeti beavatkozásra kerülő, normál testalkatú betegeket diabetesben nem szenvedő (n = 80), illetve cukorbeteg (n = 35) csoportokra osztottuk. További két betegcsoportba elhízott és nem cukorbeteg (n = 47), valamint elhízott és diabetesben szenvedő (n = 33) betegek kerültek. A légzőrendszer mechanikai tulajdonságait kényszerített oszcillációs technikával határoztuk meg, mellyel a légúti ellenállás (Raw), valamint a szöveti csillapítás (G) és rugalmasság (H) tényezői jellemezhetők. Volumetriás kapnográfia segítségével a kapnogram 3. fázisának meredekségét és a légzési térfogat különböző ventilációs/perfúziós illeszkedési zavaraiból adódó holttérfrakciókat határoztuk meg. Az intrapulmonalis shuntfrakciót és az oxigenizációs indexet (PaO2/FiO2) artériás és centrális vénás vérgázmintákból határoztuk meg. Eredmények: A megfelelő kontrollcsoportokhoz hasonlítva a cukorbetegség önmagában is növelte az Raw (7,4 ± 5 vs. 3,0 ± 1,7 H2Ocm.s/l), a G (11,3 ± 4,9 vs. 6,2 ± 2,4 H2Ocm/l) és a H (32,3 ± 12,0 vs. 25,1± 6,9 H2Ocm/l) értékét (p<0,001 mindegyik betegcsoportnál), de ez nem járt együtt a gázcserefunckció romlásával. Hasonló patológiás elváltozásokat észleltünk elhízás során a légzésmechanikában és az alveolaris heterogenitásban, amelyek azonban a gázcsere hatékonyságát is rontották. Következtetés: Cukorbetegségben a légzésmechanika romlását a fokozott hypoxiás pulmonalis vasoconstrictio ellensúlyozni képes, ezzel kivédve az intrapulmonalis shunt növekedését és az oxigenizációs képesség romlását. Orv Hetil. 2022; 163(2): 63–73.
Summary. Introduction: While sustained hyperglicemia affects the smooth muscle tone and the elastin-collagen network, the effect of diabetes mellitus on the function and structure of the airways and the lung parenchyma has not been characterized, and the confounding influence of obesity has not been elucidated. Objective: To reveal the separate and additive roles of diabetes mellitus and obesity on the respiratory function. Method: Non-obese mechanically ventilated patients were categorized as control non-diabetic (n = 80) and diabetic (n = 35) groups. Obese patients with (n = 33) or without (n = 47) associated diabetes were also enrolled. Forced oscillation technique was applied to measure airway resistance (Raw), tissue damping (G), and tissue elastance (H). Capnography was utilized to determine phase 3 slopes and ventilation dead space parameters. Arterial and central venous blood samples were analyzed to assess intrapulmonary shunt fraction (Qs/Qt) and the lung oxygenation index (PaO2/FiO2). Results: Diabetes without obesity increased the Raw (7.4 ± 5 cmH2O.s/l vs. 3.0 ± 1.7 cmH2O.s/l), G (11.3 ± 4.9 cmH2O/l vs. 6.2 ± 2.4 cmH2O/l), and H (32.3 ± 12.0 cmH2O/l vs. 25.1 ± 6.9 cmH2O/l, (p<0.001 for all), compared with the corresponding control groups. Capnographic phase 3 slope was increased in diabetes without significant changes in PaO2/FiO2 or Qs/Qt. While similar detrimental changes in respiratory mechanics and alveolar heterogeneity were observed in obese patients without diabetes, these alterations also compromised gas exchange. Conclusion: The intrinsic mechanical abnormalities in the airways and lung tissue induced by diabetes are counterbalanced by hypoxic pulmonary vasoconstriction, thereby maintaining intrapulmonary shunt fraction and oxygenation ability of the lungs. Orv Hetil. 2022; 163(2): 63–73.
NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in diabetes since 1980: a pooled analysis of 751 population-based studies with 4.4 million participants. Lancet 2016; 387(10027): 1513–1530. [Erratum: Lancet 2017; 389(10068): e2.]
Ogurtsova K, da Rocha Fernandes JD, Huang Y, et al. IDF Diabetes Atlas: Global estimates for the prevalence of diabetes for 2015 and 2040. Diabetes Res Clin Pract. 2017; 128: 40–50.
Sjoding MW, Prescott HC, Wunsch H, et al. Longitudinal changes in ICU admissions among elderly patients in the United States. Crit Care Med. 2016; 44: 1353–1360.
Jermendy Gy, Kiss Z, Rokszin Gy, et al. Changes in mortality rates and ratios in people with pharmacologically treated type 2 diabetes mellitus between 2001 and 2016 in Hungary. Diabetes Res Clin Pract. 2020; 163: 108134.
Jermendy Gy. De-escalation of antihyperglycemic treatment in patients with type 2 diabetes – when less is more. [Az antihyperglykaemiás terápia deeszkalációja 2-es típusú diabetesben – amikor a kevesebb több.] Orv Hetil. 2019; 160: 1207–1215. [Hungarian]
Abd-Elrahman KS, Walsh MP, Cole WC. Abnormal Rho-associated kinase activity contributes to the dysfunctional myogenic response of cerebral arteries in type 2 diabetes. Can J Physiol Pharmacol. 2015; 93: 177–184.
Gregg EW, Williams DE, Geiss L. Changes in diabetes-related complications in the United States. N Engl J Med. 2014; 371: 286–287.
Rask-Madsen C, King GL. Vascular complications of diabetes: mechanisms of injury and protective factors. Cell Metab. 2013; 17: 20–33.
Xu RS. Pathogenesis of diabetic cerebral vascular disease complication. World J Diabetes 2015; 6: 54–-66.
Giacco F, Brownlee M. Oxidative stress and diabetic complications. Circ Res. 2010; 107: 1058–1070.
Paneni F, Beckman JA, Creager MA, et al. Diabetes and vascular disease: pathophysiology, clinical consequences, and medical therapy: part I. Eur Heart J. 2013; 34: 2436–2443.
Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature 2001; 414: 813–820.
Stirban A, Gawlowski T, Roden M. Vascular effects of advanced glycation endproducts: clinical effects and molecular mechanisms. Mol Metab. 2014; 3: 94–108.
El-Yazbi AF, Abd-Elrahman KS. ROK and arteriolar myogenic tone generation: molecular evidence in health and disease. Front Pharmacol. 2017; 8: 87.
Brownlee M. The pathobiology of diabetic complications: a unifying mechanism. Diabetes 2005; 54: 1615–1625.
Lecube A, Simó R, Pallayova M, et al. Pulmonary function and sleep breathing: two new targets for type 2 diabetes care. Endocr Rev. 2017; 38: 550–573.
Kuziemski K, Słomiński W, Jassem E. Impact of diabetes mellitus on functional exercise capacity and pulmonary functions in patients with diabetes and healthy persons. BMC Endocr Disord. 2019; 19: 2.
Martín-Frías M, Lamas A, Lara E, et al. Pulmonary function in children with type 1 diabetes mellitus. J Pediatr Endocrinol Metab. 2015; 28: 163–169.
Schnapf BM, Banks RA, Silverstein JH, et al. Pulmonary function in insulin-dependent diabetes mellitus with limited joint mobility. Am Rev Respir Dis. 1984; 130: 930–932.
Wanke T, Formanek D, Auinger M, et al. Inspiratory muscle performance and pulmonary function changes in insulin-dependent diabetes mellitus. Am Rev Respir Dis. 1991; 143: 97–100.
Antonelli Incalzi R, Fuso L, Giordano A, et al. Neuroadrenergic denervation of the lung in type I diabetes mellitus complicated by autonomic neuropathy. Chest 2002; 121: 443–451.
Bertherat J, Lubetzki J, Lockhart A, et al. Decreased bronchial response to methacholine in IDDM patients with autonomic neuropathy. Diabetes 1991; 40: 1100–1106.
Mancini M, Filippelli M, Seghieri G, et al. Respiratory muscle function and hypoxic ventilatory control in patients with type I diabetes. Chest 1999; 115: 1553–1562.
van Gent R, Brackel HJ, de Vroede M, et al. Lung function abnormalities in children with type I diabetes. Respir Med. 2002; 96: 976–978.
Eaton T, Withy S, Garrett JE, et al. Spirometry in primary care practice: the importance of quality assurance and the impact of spirometry workshops. Chest 1999; 116: 416–423.
Giner J, Plaza V, Rigau J, et al. Spirometric standards and patient characteristics: an exploratory study of factors affecting fulfillment in routine clinical practice. Respir Care 2014; 59: 1832–1837.
Babik B, Asztalos T, Peták F, et al. Changes in respiratory mechanics during cardiac surgery. Anesth Analg. 2003; 96: 1280–1287.
Hantos Z, Daróczy B, Suki B, et al. Input impedance and peripheral inhomogeneity of dog lungs. J Appl Physiol. 1992; 72: 168–178.
Babik B, Csorba Z, Czövek D, et al. Effects of respiratory mechanics on the capnogram phases: importance of dynamic compliance of the respiratory system. Crit Care 2012; 16: R177.
Fowler WS. Lung function studies; the respiratory dead space. Am J Physiol. 1948; 154: 405–416.
Balogh AL, Peták F, Fodor GH, et al. Capnogram slope and ventilation dead space parameters: comparison of mainstream and sidestream techniques. Br J Anaesth. 2016; 117: 109–117.
Tusman G, Sipmann FS, Bohm SH. Rationale of dead space measurement by volumetric capnography. Anesth Analg. 2012; 114: 866–874.
Csorba Z, Petak F, Nevery K, et al. Capnographic parameters in ventilated patients: correspondence with airway and lung tissue mechanics. Anesth Analg. 2016; 122: 1412–1420.
Bayat S, Strengell S, Porra L, et al. Methacholine and ovalbumin challenges assessed by forced oscillations and synchrotron lung imaging. Am J Respir Crit Care Med. 2009; 180: 296–303.
Oliveira TL, Candeia-Medeiros N, Cavalcante-Araújo PM, et al. SGLT1 activity in lung alveolar cells of diabetic rats modulates airway surface liquid glucose concentration and bacterial proliferation. Sci Rep. 2016; 6: 21752.
Duncan BB, Schmidt MI, Pankow JS, et al. Low-grade systemic inflammation and the development of type 2 diabetes: the atherosclerosis risk in communities study. Diabetes 2003; 52: 1799–1805.
Schmidt MI, Duncan BB, Sharrett AR, et al. Markers of inflammation and prediction of diabetes mellitus in adults (Atherosclerosis Risk in Communities study): a cohort study. Lancet 1999; 353: 1649–1652.
Singh S, Bodas M, Bhatraju NK, et al. Hyperinsulinemia adversely affects lung structure and function. Am J Physiol Lung Cell Mol Physiol. 2016; 310: L837–L845.
Wang CC, Gurevich I, Draznin B. Insulin affects vascular smooth muscle cell phenotype and migration via distinct signaling pathways. Diabetes 2003; 52: 2562–2569.
Douglas NJ, Campbell IW, Ewing DJ, et al. Reduced airway vagal tone in diabetic patients with autonomic neuropathy. Clin Sci (Lond) 1981; 61: 581–584.
Südy R, Schranc Á, Fodor GH, et al. Lung volume dependence of respiratory function in rodent models of diabetes mellitus. Respir Res. 2020; 21: 82.
Babik B, Peták F, Agócs S, et al. Diabetes mellitus: endothelial dysfunction and changes in hemostasis. [Diabetes mellitus: endotheldiszfunkció és haemostasiselváltozások.] Orv Hetil. 2018; 159: 1335–1345. [Hungarian]
Hollenbach J, Lopez-Rodriguez E, Mühlfeld C, et al. Voluntary activity modulates sugar-induced elastic fiber remodeling in the alveolar region of the mouse lung. Int J Mol Sci. 2019; 20: 2438.
Ofulue AF, Thurlbeck WM. Experimental diabetes and the lung. II. In vivo connective tissue metabolism. Am Rev Respir Dis. 1988; 138: 284–289.
Sandler M. Is the lung a ᾿target organ᾿ in diabetes mellitus? Arch Intern Med. 1990; 150: 1385–1388.
Foster DJ, Ravikumar P, Bellotto DJ, et al. Fatty diabetic lung: altered alveolar structure and surfactant protein expression. Am J Physiol Lung Cell Mol Physiol. 2010; 298: L392–L403.
Sugahara K, Ezaki K, Kaneko T, et al. Studies of the lungs in diabetes mellitus. II. Phospholipid analyses on the surfactant from broncho-alveolar lavage fluid of alloxan-induced diabetic rats. Biochem Biophys Res Commun. 1981; 98: 163–168.
Kalchiem-Dekel O, Hines SE. Forty years of reference values for respiratory system impedance in adults: 1977–2017. Respir Med. 2018; 136: 37–47.
Peters U, Dechman G, Hernandez P, et al. Improvement in upright and supine lung mechanics with bariatric surgery affects bronchodilator responsiveness and sleep quality. J Appl Physiol. 2018; 125: 1305–1314.
Böhm SH, Maisch S, von Sandersleben A, et al. The effects of lung recruitment on the phase III slope of volumetric capnography in morbidly obese patients. Anesth Analg. 2009; 109: 151–159.
Tusman G, Groisman I, Fiolo FE, et al. Noninvasive monitoring of lung recruitment maneuvers in morbidly obese patients: the role of pulse oximetry and volumetric capnography. Anesth Analg. 2014; 118: 137–144.
Boriek AM, Lopez MA, Velasco C, et al. Obesity modulates diaphragm curvature in subjects with and without COPD. Am J Physiol Regul Integr Comp Physiol. 2017; 313: R620–R629.
Rivas E, Arismendi E, Agustí A, et al. Ventilation/perfusion distribution abnormalities in morbidly obese subjects before and after bariatric surgery. Chest 2015; 147: 1127–1134.