A koronavírus-betegség (COVID–19) lefolyása rendkívül sokféle lehet. Az érintettek egy része gyakorlatilag tünetmentes marad, míg másoknál súlyos, esetenként halálos kimenetelű komplikációk alakulnak ki. Ennek a variabilitásnak a hátterében – bár kétségtelenül szükség van további kutatásokra is – minden jel szerint az immunrendszer egyes alkotóelemeinek eltérő, néha kifejezetten kóros működése áll. Összefoglalónkban azt szeretnénk bemutatni, hogy milyen kölcsönhatás alakul ki a természetes és az adaptív immunrendszer, valamint a súlyos akut légzőszervi szindrómát okozó koronavírus-2 (SARS-CoV-2) között az emberi szervezetben. Megvizsgáljuk, hogyan befolyásolja a betegség lefolyását az I-es típusú interferonoknak a genetikai hibákra vagy az antiinterferon-autoantitestek jelenlétére visszavezethető elégtelen aktivitása, a myeloid rendszer zavara, a hipergyulladásos állapot kialakulása, a lymphopenia és az adaptív immunrendszer egyénenként eltérő működése. Kitérünk azokra a kulcsfontosságú megfigyelésekre is, amelyek segítettek körvonalazni a SARS-CoV-2-specifikus humorális és sejtközvetített immunmemória legfontosabb jellemzőit. Orv Hetil. 2022; 163(20): 774–787.
Singh R, Kang A, Luo X, et al. COVID-19: Current knowledge in clinical features, immunological responses, and vaccine development. FASEB J. 2021; 35: e21409.
Wong LR, Perlman S. Immune dysregulation and immunopathology induced by SARS-CoV-2 and related coronaviruses − are we our own worst enemy? Nat Rev Immunol. 2022; 22: 47−56. [Erratum: Nat Rev Immunol. 2022; 22: 200.]
Lee S, Channappanavar R, Kanneganti TD. Coronaviruses: innate immunity, inflammasome activation, inflammatory cell death, and cytokines. Trends Immunol. 2020; 41: 1083−1099.
Lee WS, Yousefi M, Yan B, et al. Know your enemy and know yourself − the case of SARS-CoV-2 host factors. Curr Opin Virol. 2021; 50: 159−170.
Harrison AG, Lin T, Wang P. Mechanisms of SARS-CoV-2 transmission and pathogenesis. Trends Immunol. 2020; 41: 1100−1115.
Malone B, Urakova N, Snijder EJ, et al. Structures and functions of coronavirus replication-transcription complexes and their relevance for SARS-CoV-2 drug design. Nat Rev Mol Cell Biol. 2022; 23: 21–39.
Oh SJ, Shin OS. SARS-CoV-2-mediated evasion strategies for antiviral interferon pathways. J Microbiol. 2022; 60: 290–299.
Zhao X, Chen D, Li X, et al. Interferon control of human coronavirus infection and viral evasion: mechanistic insights and implications for antiviral drug and vaccine development. J Mol Biol. 2022; 434: 167438.
Carvalho T, Krammer F, Iwasaki A. The first 12 months of COVID-19: a timeline of immunological insights. Nat Rev Immunol. 2021; 21: 245–256.
Sette A, Crotty S. Adaptive immunity to SARS-CoV-2 and COVID-19. Cell 2021; 184: 861–880.
Stertz S, Hale BG. Interferon system deficiencies exacerbating severe pandemic virus infections. Trends Microbiol. 2021; 29: 973–982.
Reusch N, De Domenico E, Bonaguro L, et al. Neutrophils in COVID-19. Front Immunol. 2021; 12: 652470.
Al-Kuraishy HM, Al-Gareeb AI, Al-Hussaniy HA, et al. Neutrophil Extracellular Traps (NETs) and Covid-19: a new frontiers for therapeutic modality. Int Immunopharmacol. 2022; 104: 108516.
Paludan SR, Mogensen TH. Innate immunological pathways in COVID-19 pathogenesis. Sci Immunol. 2022; 7: eabm5505.
Merad M, Martin JC. Pathological inflammation in patients with COVID-19: a key role for monocytes and macrophages. Nat Rev Immunol. 2020; 20: 355–362.
Kosyreva A, Dzhalilova D, Lokhonina A, et al. The role of macrophages in the pathogenesis of SARS-CoV-2-associated acute respiratory distress syndrome. Front Immunol. 2021; 12: 682871.
Galati D, Zanotta S, Capitelli L, et al. A bird’s eye view on the role of dendritic cells in SARS-CoV-2 infection: Perspectives for immune-based vaccines. Allergy 2022; 77: 100–110.
Björkström NK, Strunz B, Ljunggren HG. Natural killer cells in antiviral immunity. Nat Rev Immunol. 2022; 22: 112–123.
Karki R, Kanneganti TD. The ‘cytokine storm’: molecular mechanisms and therapeutic prospects. Trends Immunol. 2021; 42: 681–705.
Palmas F, Clarke J, Colas RA, et al. Dysregulated plasma lipid mediator profiles in critically ill COVID-19 patients. PLoS ONE 2021; 16: e0256226.
Karki R, Sharma BR, Tuladhar S, et al. Synergism of TNF-α and IFN-γ triggers inflammatory cell death, tissue damage, and mortality in SARS-CoV-2 infection and cytokine shock syndromes. Cell 2021; 184: 149–168.e17.
Diamond MS, Kanneganti TD. Innate immunity: the first line of defense against SARS-CoV-2. Nat Immunol. 2022; 23: 165–176.
Galipeau Y, Greig M, Liu G, Driedger M, Langlois MA. Humoral responses and serological assays in SARS-CoV-2 infections. Front Immunol. 2020; 11: 610688.
Post N, Eddy D, Huntley C, et al. Antibody response to SARS-CoV-2 infection in humans: a systematic review. PLoS ONE 2020; 15: e0244126.
Hoepel W, Chen HJ, Geyer CE, et al. High titers and low fucosylation of early human anti-SARS-CoV-2 IgG promote inflammation by alveolar macrophages. Sci Transl Med. 2021; 13: eabf8654.
Ullah I, Prévost J, Ladinsky MS, et al. Live imaging of SARS-CoV-2 infection in mice reveals that neutralizing antibodies require Fc function for optimal efficacy. Immunity 2021; 54: 2143–2158.e15.
Elsner RA, Shlomchik MJ. Germinal center and extrafollicular B cell responses in vaccination, immunity, and autoimmunity. Immunity 2020; 53: 1136–1150.
Woodruff MC, Ramonell RP, Nguyen DC, et al. Extrafollicular B cell responses correlate with neutralizing antibodies and morbidity in COVID-19. Nat Immunol. 2020; 21: 1506–1516.
Laidlaw BJ, Ellebedy AH. The germinal centre B cell response to SARS-CoV-2. Nat Rev Immunol. 2022; 22: 7–18.
Tan AT, Linster M, Tan CW, et al. Early induction of functional SARS-CoV-2-specific T cells associates with rapid viral clearance and mild disease in COVID-19 patients. Cell Rep. 2021; 34: 108728.
Knight JS, Caricchio R, Casanova JL, et al. The intersection of COVID-19 and autoimmunity. J Clin Invest. 2021; 131: e154886.
Chao YX, Rötzschke O, Tan EK. The role of IgA in COVID-19. Brain Behav Immun. 2020; 87: 182–183.
Pierce CA, Sy S, Galen B, et al. Natural mucosal barriers and COVID-19 in children. JCI Insight 2021; 6: e148694.
Moss P. The T cell immune response against SARS-CoV-2. Nat Immunol. 2022; 23: 186–193.
de Candia P, Prattichizzo F, Garavelli S, et al. T cells: warriors of SARS-CoV-2 infection. Trends Immunol. 2021; 42: 18–30.
Niessl J, Sekine T, Buggert M. T cell immunity to SARS-CoV-2. Semin Immunol. 2021; 55: 101505.
Jarjour NN, Masopust D, Jameson SC. T Cell memory: understanding COVID-19. Immunity 2021; 54: 14–18.
Jergović M, Coplen CP, Uhrlaub JL, et al. Immune response to COVID-19 in older adults. J Heart Lung Transplant. 2021; 40: 1082–1089.
Grifoni A, Sidney J, Vita R, et al. SARS-CoV-2 human T cell epitopes: adaptive immune response against COVID-19. Cell Host Microbe 2021; 29: 1076–1092.
Nagler A, Kalaora S, Barbolin C, et al. Identification of presented SARS-CoV-2 HLA class I and HLA class II peptides using HLA peptidomics. Cell Rep. 2021; 35: 109305.
Keeton R, Tincho MB, Ngomti A, et al. T cell responses to SARS-CoV-2 spike cross-recognize Omicron. Nature 2022; 603: 488–492.
Riou C, Keeton R, Moyo-Gwete T, et al. Escape from recognition of SARS-CoV-2 variant spike epitopes but overall preservation of T cell immunity. Sci Transl Med. 2022; 14: eabj6824.
Mazzoni A, Salvati L, Maggi L, et al. Hallmarks of immune response in COVID-19: Exploring dysregulation and exhaustion. Semin Immunol. 2021; 55: 101508.
Björkström NK, Ponzetta A. Natural killer cells and unconventional T cells in COVID-19. Curr Opin Virol. 2021; 49: 176–182.
Orumaa K, Dunne MR. The role of unconventional T cells in COVID-19. Ir J Med Sci. 2021 May 29: 1–10. https://doi.org/10.1007/s11845-021-02653-9 [Epub ahead of print]
Siggins MK, Thwaites RS, Openshaw PJ. Durability of immunity to SARS-CoV-2 and other respiratory viruses. Trends Microbiol. 2021; 29: 648–662. [Erratum: 2021; 29: 862.]
White HN. B-cell memory tesponses to variant viral antigens. Viruses. 2021; 13: 565.
Dan JM, Mateus J, Kato Y, et al. Immunological memory to SARS-CoV-2 assessed for up to 8 months after infection. Science 2021; 371: eabf4063.
Kundu R, Narean JS, Wang L, et al. Cross-reactive memory T cells associate with protection against SARS-CoV-2 infection in COVID-19 contacts. Nat Commun. 2022; 13: 80.
Meyerholz DK, Perlman S. Does common cold coronavirus infection protect against severe SARS-CoV-2 disease? J Clin Invest. 2021; 131: e144807.