Az elhízás genetikai, környezeti tényezőknek és a zsírszövet szisztémás gyulladásának kombinációjában alakul ki. Az utóbbi évtizedben egyre több bizonyíték utal arra, hogy a bélmikrobiota olyan környezeti tényező, amely döntő szerepet játszik az elhízásban és a hozzá társuló anyagcsere-rendellenességekben. Összefoglaló közleményünkben a bélmikrobiota és az elhízás közötti összefüggést tekintjük át az általunk elérhető irodalmi adatok alapján. A bélflóra a konvencionális baktériumok egyensúlyi állapotában védi a gazdaszervezet egészségét, segíti az immunrendszer fejlődését. A gazdaszervezet genomja, táplálkozása, életmódja és epigenetikai változások kórosan megváltoztathatják a mikrobiota összetételét. Dysbiosis esetén károsodik a bélrendszerhez kapcsolódó lymphoid szövet (GALT) fejlődése, romlik a bélgát integritása. A következményes bél-hiperpermeabilitás miatt a patogén kórokozók komponensei, mint például a lipopoliszacharidok a vérkeringésbe jutnak. E komponensek kórokozó képességgel bíró molekuláris minták ligandjaként a zsírszöveti immunsejtek receptoraihoz kötődve kiváltják a zsírszövet diszfunkcióját. A zsírszövetben fokozódik a gyulladásos citokinek szekréciója. Ez tartós alacsony krónikus gyulladást indukál, amely felelős az elhízás kialakulásáért. A bélbarrier hiperpermeabilitása által okozott egészségkárosodást beavatkozásokkal csökkenteni lehet, illetve a folyamat korai szakaszában helyre lehet állítani. Az összefüggések ismerete segíti az elhízás megelőzését és kezelését. Orv Hetil. 2022; 163(32): 1261–1267.
Nicholson JK, Holmes E, Kinross J, et al. Host–gut microbiota metabolic interactions. Science 2012; 336: 1262–1267.
Manco M, Putignani L, Bottazzo GF. Gut microbiota, lipopolysaccharides, and innate immunity in the pathogenesis of obesity and cardiovascular risk. Endocr Rev. 2010; 31: 817–844.
Schroeder BO, Bäckhed F. Signals from the gut microbiota to distant organs in physiology and disease. Nat Med. 2016; 22: 1079–1089.
Yang G, Wei J, Liu P, et al. Role of the gut microbiota in type 2 diabetes and related diseases. Metabolism 2021; 117: 154712.
Hsu BB, Gibson TE, Yeliseyev V, et al. Dynamic modulation of the gut microbiota and metabolome by bacteriophages in a mouse model. Cell Host Microbe 2019; 25: 803–814.e5.
Shao TY, Ang WX, Jiang TT, et al. Commensal Candida albicans positively calibrates systemic Th17 immunological responses. Cell Host Microbe 2019; 25: 404–417.e6.
Gawlik A, Salonen A, Jian C, al. Personalized approach to childhood obesity: lessons from gut microbiota and omics studies. Narrative review and insights from the 29th European childhood obesity congress. Pediatr Obes. 2021; 16: e12835.
Halmos T, Suba I. Physiological patterns of intestinal microbiota. The role of dysbacteriosis in obesity, insulin resistance, diabetes and metabolic syndrome. [A bélbakterióta élettani jellemzői és a dysbacteriosis szerepe az elhízásban, inzulinrezisztenciában, diabetesben és metabolikus szindrómában.] Orv Hetil. 2016; 157: 13–22. [Hungarian]
Takiishi T, Fenero CI, Câmara NO. Intestinal barrier and gut microbiota: shaping our immune responses throughout life. Tissue Barriers 2017; 5: e1373208.
Fasano A. Gut permeability, obesity, and metabolic disorders: who is the chicken and who is the egg? Am J Clin Nutr. 2017; 105: 3–4.
Biró Gy. Gut microbiota and its relationship to health and disease. Literature review. [A bél mikrobióta kapcsolata az egészséggel és betegséggel. Irodalmi áttekintés.] Egészségtudomány 2014; 58: 1–14. [Hungarian]
Gonzalez A, Krieg R, Massey HD, et al. Sodium butyrate ameliorates insulin resistance and renal failure in CKD rats by modulating intestinal permeability and mucin expression. Nephrol Dial Transplant. 2019; 34: 783–794.
Mörkl S, Lackner S, Meinitzer A, et al. Gut microbiota, dietary intakes and intestinal permeability reflected by serum zonulin in women. Eur J Nutr. 2018; 57: 2985–2997.
Schwiertz A, Spiegel J, Dillmann U, et al. Fecal markers of intestinal inflammation and intestinal permeability are elevated in Parkinson’s disease. Parkinsonism Relat Disord. 2018; 50: 104–107.
Gasmi A, Mujawdiya PK, Pivina L, et al. Relationship between gut microbiota, gut hyperpermeability and obesity. Curr Med Chem. 2021; 28: 827–839.
Hayes CL, Dong J, Galipeau HJ, et al. Commensal microbiota induces colonic barrier structure and functions that contribute to homeostasis. Sci Rep. 2018, 8: 14184.
Zhang F, Li Y, Wang X, et al. The impact of Lactobacillus plantarum on the gut microbiota of mice with DSS-induced colitis. Biomed Res Int. 2019; 2019: 3921315.
Aguirre M, Venema K. Does the gut microbiota contribute to obesity? Going beyond the gut feeling. Microorganisms 2015; 3: 213–235.
Hills RD Jr., Pontefract BA, Mishcon HR, et al. Gut microbiome: profound implications for diet and disease. Nutrients 2019; 11: 1613.
Scheithauer TP, Rampanelli E, Nieuwdorp M, et al. Gut microbiota as a trigger for metabolic inflammation in obesity and type 2 diabetes. Front Immunol. 2020; 11: 571731.
Peng L, Li ZR, Green RS, et al. Butyrate enhances the intestinal barrier by facilitating tight junction assembly via activation of AMP-activated protein kinase in Caco-2 cell monolayers. J Nutr. 2009; 139: 1619–1625.
Kang C, Wang B, Kaliannan K, et al. Gut microbiota mediates the protective effects of dietary capsaicin against chronic low-grade inflammation and associated obesity induced by high-fat diet. mBio. 2017; 8: e00470-17.
Chambers ES, Viardot A, Psichas A, et al. Effects of targeted delivery of propionate to the human colon on appetite regulation, body weight maintenance and adiposity in overweight adults. Gut 2015; 64: 1744–1754.
den Besten G, van Eunen K, Groen AK, et al. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J Lipid Res. 2013; 54: 2325–2340.
Feng Y, Wang Y, Wang P, et al. Short-chain fatty acids manifest stimulative and protective effects on intestinal barrier function through the inhibition of NLRP3 inflammasome and autophagy. Cell Physiol Biochem. 2018; 49: 190–205.
Caesar R, Tremaroli V, Kovatcheva-Datchary P, et al. Crosstalk between gut microbiota and dietary lipids aggravates WAT inflammation through TLR signaling. Cell Metab. 2015; 22: 658–668.
Sonnenburg JL, Bäckhed F. Diet-microbiota interactions as moderators of human metabolism. Nature 2016; 535: 56–64.
Amabebe E, Robert FO, Agbalalah T, et al. Microbial dysbiosis-induced obesity: role of gut microbiota in homoeostasis of energy metabolism. Br J Nutr. 2020; 123: 1127–1137.
Rastelli M, Knauf C, Cani PD. Gut microbes and health: a focus on the mechanisms linking microbes, obesity, and related disorders. Obesity (Silver Spring) 2018; 26: 792–800.
Petra AI, Panagiotidou S, Hatziagelaki E, et al. Gut–microbiota–brain axis and its effect on neuropsychiatric disorders with suspected immune dysregulation. Clin Ther. 2015; 37: 984–995.
Gomes JM, Costa JA, Alfenas RC. Metabolic endotoxemia and diabetes mellitus: a systematic review. Metabolism 2017; 68: 133–144.
Gregor MF, Hotamisligil GS. Inflammatory mechanisms in obesity. Annu Rev Immunol. 2011; 29: 415–445.
Genser L, Poitou C, Brot-Laroche É, et al. Alteration of intestinal permeability: the missing link between gut microbiota modifications and inflammation in obesity? [Alteration of intestinal permeability: the missing link between gut microbiota modifications and inflammation in obesity?] Med Sci (Paris) 2016; 32: 461–469. [French]
Ruiz-Núñez B, Pruimboom L, Dijck-Brouwer DA, et al. Lifestyle and nutritional imbalances associated with Western diseases: causes and consequences of chronic systemic low-grade inflammation in an evolutionary context. J Nutr Biochem. 2013; 24: 1183–1201.
Magne F, Gotteland M, Gauthier L, et al. The firmicutes/bacteroidetes ratio: a relevant marker of gut dysbiosis in obese patients? Nutrients 2020; 12: 1474.
Tilg H, Zmora N, Adolph TE, et al. The intestinal microbiota fuelling metabolic inflammation. Nat Rev Immunol. 2020; 20: 40–54.
Ali AT, Hochfeld WE, Myburgh R, et al. Adipocyte and adipogenesis. Eur J Cell Biol. 2013; 92: 229–236.
Ma X, Wang D, Zhao W, et al. Deciphering the roles of PPARγ in adipocytes via dynamic change of transcription complex. Front Endocrinol (Lausanne) 2018; 9: 473.
Lee BC, Kim MS, Pae M, et al. Adipose natural killer cells regulate adipose tissue macrophages to promote insulin resistance in obesity. Cell Metab. 2016; 23: 685–698.
Brestoff JR, Kim BS, Saenz SA, et al. Group 2 innate lymphoid cells promote beiging of white adipose tissue and limit obesity. Nature 2015; 519: 242–246.
O’Sullivan TE, Rapp M, Fan X, et al. Adipose-resident group 1 innate lymphoid cells promote obesity-associated insulin resistance. Immunity 2016; 45: 428–441.
Boulenouar S, Michelet X, Duquette D, et al. Adipose type one innate lymphoid cells regulate macrophage homeostasis through targeted cytotoxicity. Immunity 2017; 46: 273–286.
Hotamisligil GS, Shargill NS, Spiegelman BM. Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science 1993; 259: 87–91.
Goossens GH. The Metabolic phenotype in obesity: fat mass, body fat distribution, and adipose tissue function. Obes Facts 2017; 10: 207–215.
Kawai T, Autieri MV, Scalia R. Adipose tissue inflammation and metabolic dysfunction in obesity. Am J Physiol Cell Physiol. 2021; 320: C375–C391.
Ross R, Aru J, Freeman J, et al. Abdominal adiposity and insulin resistance in obese men. Am J Physiol Endocrinol Metab. 2002; 282: E657–E663.
Cinti S, Mitchell G, Barbatelli G, et al. Adipocyte death defines macrophage localization and function in adipose tissue of obese mice and humans. J Lipid Res. 2005; 46: 2347–2355.
Bäckhed F, Manchester JK, Semenkovich CF, et al. Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proc Natl Acad Sci USA 2007; 104: 979–984.