Bizonyos nyomelemek ionos, illetve komplexen kötött vegyületei nélkülözhetetlenek számtalan biokémiai folyamatban, a humán szervezet megfelelő működéséhez. Hiányuk vagy akkumulációjuk számos egészségügyi problémát, betegséget okoz. Korábban az inzulinrezisztencia és a cukorbetegség kezelésében a nyomelemeket kulcsfontosságú faktornak gondolták, azonban a diabetes kialakulásában a nyomelemek hiánya, fontossága vagy a szövődmények kialakulásában és kezelésében a nyomelemstatus megítélése, a pótlás fontossága még ma is ellentmondásos. A szerzők ezért áttekintik a nyomelemek szerepét a diabetes kialakulásában, patogenezisében és progressziójában. Röviden beszámolnak a cink(II), a mangán(II, III), a réz(I, II), a króm(III), a vas(II, III), a kobalt(II), a vanádium(III, IV, V), a molibdén(IV, VI), a jód(I), a szelén(II, IV, VI) és a lítium(I) humán szervezetben ismert legfontosabb folyamatairól és a diabetesszel összefüggő biokémiai változásokról. Részletezik a nyomelemstatus eltéréseit diabetesben, kapcsolatukat a szabad gyökökkel és az antioxidáns védelmi rendszerrel. Rátérnek néhány rizikófaktor tárgyalására, amely súlyosabb mikroelemhiányhoz és szövődmények kialakulásához vezet. Orv Hetil. 2022; 163(33): 1303–1310.
Afridi HI, Kazi TG, Kazi N, et al. Status of essential trace metals in biological samples of diabetic mother and their neonates. Arch Gynecol Obstet. 2009; 280: 415–423.
Kabata-Pendias A, Mukherjee AB. Trace elements from soil to human. Springer, Berlin, Heidelberg, New York, 2007.
Sukumar A, Subramanian R. Relative element levels in the paired samples of scalp hair and fingernails of patients from New Delhi. Sci Total Environ. 2007; 372: 474–479.
Leahy JL. Pathogenesis of type 2 diabetes mellitus. Arch Med Res. 2005; 36: 197–209.
Zheng Y, Li XK, Wang Y, et al. The role of zinc, copper and iron in the pathogenesis of diabetes and diabetic complications: therapeutic effects by chelators. Hemoglobin 2008; 32: 135–145.
Moreno RC, Navas-Acien A, Escolar E, et al. Potential role of metal chelation to prevent the cardiovascular complications of diabetes. J Clin Endocrinol Metab. 2019; 104: 2931–2941.
Flores CR, Puga MP, Wrobel K, et al. Trace elements status in diabetes mellitus type 2: possible role of the interaction between molybdenum and copper in the progress of typical complications. Diabetes Res Clin Pract. 2011; 91: 333–341.
Yerlikaya FH, Toker A, Arıbaş A. Serum trace elements in obese women with or without diabetes. Indian J Med Res. 2013; 137: 339–345.
Nasli-Esfahani E, Faridbod F, Larijani B, et al. Trace element analysis of hair, nail, serum and urine of diabetes mellitus patients by inductively coupled plasma atomic emission spectroscopy. Iranian J Diab Lipid Disord. 2011; 10: 1–9.
Kruse-Jarres JD, Rükgauer M. Trace elements in diabetes mellitus. Peculiarities and clinical validity of determinations in blood cells. J Trace Elem Med Biol. 2000; 14: 21–27.
Aguilar MV, Saavedra P, Arrieta FJ, et al. Plasma mineral content in type-2 diabetic patients and their association with the metabolic syndrome. Ann Nutr Metab. 2007; 51: 402–406.
Kazi TG, Afridi HI, Kazi N, et al. Copper, chromium, manganese, iron, nickel, and zinc levels in biological samples of diabetes mellitus patients. Boil Trace Elem Res. 2008; 122: 1–18.
Szentmihályi K. Metal element homeostasis and oxidative stress in pathological processes. [Fémelem-homeosztázis és oxidatív stressz patológiás folyamatokban.] Orv Hetil. 2019; 160: 1407–1416. [Hungarian]
Dubey P, Thakur V, Chattopadhyay M. Role of minerals and trace elements in diabetes and insulin resistance. Nutrients 2020; 12: 1864.
Meyer JA, Spence DM. A perspective on the role of metals in diabetes: past findings and possible future directions. Metallomics 2009; 1: 32–49.
Szentmihályi K, Vinkler P, Fodor J, et al. The role of zinc in the homeostasis of human organism. [A cink szerepe az emberi szervezet homeosztázisában.] Orv Hetil. 2009; 150: 681–687. [Hungarian]
Kinlaw WB, Levine AS, Morley JE, et al. Abnormal zinc metabolism in type II diabetes mellitus. Am J Med. 1983; 75: 273–277.
Abou-Seif MA, Youssef AA. Evaluation of some biochemical changes in diabetic patients. Clin Chim Acta 2004; 346: 161–170.
Szentmihályi K, Vinkler P, Fodor J, et al. The role of manganese in the human organism. [A mangán szerepe az emberi szervezet működésében.] Orv Hetil. 2006; 147: 2027–2030. [Hungarian]
Du S, Wu X, Han T, et al. Dietary manganese and type 2 diabetes mellitus: two prospective cohort studies in China. Diabetologia 2018; 61: 1985–1995.
Nicoloff G, Mutaftchiev K, Strashimirov D, et al. Serum manganese in children with diabetes mellitus type 1. Diabetol Croat. 2004; 33: 47–51.
Osredkar J, Sustar N. Copper and zinc, biological role and significance of copper/zinc imbalance. J Clinic Toxicol. 2011; S3: 0495.
Qiu Q, Zhang F, Zhu W, et al. Copper in diabetes mellitus: a meta-analysis and systematic review of plasma and serum studies. Biol Trace Elem Res. 2017; 177: 53–63.
Failla ML, Kiser RA. Hepatic and renal metabolism of copper and zinc in the diabetic rat. Am J Physiol. 1983; 244: E115–E121.
Vincent JB. Mechanisms of chromium action: low-molecular-weight chromium-binding substance. J Am Coll Nutr. 1999; 18: 6–12.
Balamurugan K, Rajaram R, Ramasami T, et al. Chromium(III)-induced apoptosis of lymphocytes: death decision by ROS and Src-family tyrosine kinases. Free Radic Biol Med. 2002; 33: 1622–1640.
Rajendran K, Manikandan S, Nair L. Serum chromium levels in type 2 diabetic patients and its association with glycaemic control. J Clin Diagn Res. 2015; 9: OC05–OC08.
Wang ZQ, Qin J, Martin J, et al. Phenotype of subjects with type 2 diabetes mellitus may determine clinical response to chromium supplementation. Metabolism 2007; 56: 1652–1655.
Sundaram B, Aggarwal A, Sandhir R. Chromium picolinate attenuates hyperglycemia-induced oxidative stress in streptozotocin-induced diabetic rats. J Trace Elem Med Biol. 2013; 27: 117–121.
Lakatos B, Szentmihályi K, Vinkler P, et al. Physiologic and pathologic role of iron in the human body. Iron deficiency anemia in newborn babies. [A vas fiziológiás és patológiás szerepe az emberi szervezet működésében. Az újszülöttek vashiányos anémiája.] Orv Hetil. 2004; 145: 1853–1859. [Hungarian]
Montonen J, Boeing H, Steffen A, et al. Body iron stores and risk of type 2 diabetes: results from the European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam study. Diabetologia 2012; 55: 2613–2621. Erratum: Diabetologia 2012; 55: 3144.
Lakatos B, Szentmihályi K, Sándor Z, et al. Role of trace elements in erythropoiesis and iron metabolism. [A nyomelemek szerepe az erytropoezisben és a vas metabolizmusában.] Gyógyszerészet 1997; 41: 424–430. [Hungarian]
Anjum A, Yousaf M, Zuber M, et al. Comparative study on calcium, magnesium and cobalt in diabetic and non diabetic patients (males) in Punjab, Pakistan. Afr J Biotechnol. 2012; 11: 7258–7262.
Yildirim O, Büyükbingöl Z. Effect of cobalt on the oxidative status in heart and aorta of streptozotocin-induced diabetic rats. Cell Biochem Funct. 2003; 21: 27–33.
Mohammad A, Sharma V, McNeill JH. Vanadium increases GLUT4 in diabetic rat skeletal muscle. Mol Cell Biochem. 2002; 233: 139–143.
Refat MS, El-Shazly SA. Identification of a new antidiabetic agent by combining VOSO4 and vitamin E in a single molecule: studies on its spectral, thermal and pharmacological properties. Eur J Med Chem. 2010; 45: 3070–3079.
Mendel RR. The molybdenum cofactor. J Biol Chem. 2013; 288: 13165–13172.
Medici V, Rossaro L, Sturniolo GC. Wilson disease – a practical approach to diagnosis, treatment and follow-up. Dig Liver Dis. 2007; 39: 601–609.
Chen G, Wu J, Lin Y, et al. Associations between cardiovascular risk, insulin resistance, β-cell function and thyroid dysfunction: a cross-sectional study in the ethnic minority group of Fujian Province in China. Eur J Endocrinol. 2010; 163: 775–782.
Rayman MP. Selenium and human health. Lancet 2012; 379: 1256–1268.
Priya K, Dhas TK, Sylvia J, et al. Selenium and glutathione peroxidase in diabetes mellitus. Int J Pharma Biosci. 2015; 6: 496–501.
Bleys J, Navas-Acien A, Guallar E. Serum selenium and diabetes in U.S. adults. Diabetes Care 2007; 30: 829–834.
Park K, Rimm EB, Siscovick DS, et al. Toenail selenium and incidence of type 2 diabetes in U.S. men and women. Diabetes Care 2012; 35: 1544–1551.
McNeill JH, Delgatty HL, Battell ML. Insulinlike effects of sodium selenate in streptozotocin-induced diabetic rats. Diabetes 1991; 40: 1675–1678.
Forlenza OV, Radanovic M, Talib LL, et al. Clinical and biological effect of long-term lithium treatment in older adults with amnestic mild cognitive impairment: randomised clinical trial. Br J Psychiatry 2019; 215: 668–674.
Liu Q, Sun L, Tan Y, et al. Role of iron deficiency and overload in the pathogenesis of diabetes and diabetic complications. Curr Med Chem. 2009; 16: 113–129.
Al-Maroof RA, Al-Sharbatti SS. Serum zinc levels in diabetic patients and effect of zinc supplementation on glycemic control of type 2 diabetics. Saudi Med J. 2006; 27: 344–350.
Burlet E, Jain SK. Manganese supplementation reduces high glucose-induced monocyte adhesion to endothelial cells and endothelial dysfunction in zucker diabetic fatty rats. J Biol Chem. 2013; 288: 6409–6416.
Yates AA. Establishing new principles for nutrient reference values (NRVs) for food labeling purposes. Nutr Res Pract. 2007; 1: 89–93.