A rosszindulatú daganatok és a diabetes mellitus epidemiológiai mutatói hasonlóan változnak, vagyis a világban a rák- és a cukorbetegek száma egyaránt dinamikusan növekszik. A közös metabolikus és molekuláris háttérrel is magyarázhatóan mind gyakrabban fordul elő, hogy a két kórállapot egyazon betegen szinkrón vagy metakrón módon manifesztálódik. Ebből adódóan egyre több esetben szükséges egyidejű kezelésük. Mindez egy új tudomány, az onkodiabetológia alapjait is megveti, melynek egyik fontos célja lehet az antineoplasztikus és antidiabetikus terápiák kombinációinak optimalizálása. A tumorellenes készítmények tekintetében figyelembe kell venni a komplex anyagcserét befolyásoló mellékhatásaikat, különösen az inzulinrezisztenciát fokozó és az inzulinszekréciót csökkentő diabetogén effektusaikat. Az antidiabetikumok vonatkozásában pedig mérlegelni szükséges a tumorprevencióban betöltött általános szerepüket, valamint a kemoterápiák toxicitását mérséklő és a daganatok kemorezisztenciáját áttörő hatásaikat. Jelen közleményünkben megvizsgáljuk az antineoplasztikus ágensek effektivitásának és a szervezet glükometabolikus állapotának összefüggéseit, a diabeteses rákbetegek onkoterápiájának sajátosságait, valamint áttekintjük a diabetogén hatás szempontjából legnagyobb súlyú citosztatikus szereket. Ismertetjük a másodlagos diabetes főbb tulajdonságait és altípusait, illetve részletesen tárgyaljuk a daganatok és a daganatellenes kezelések által kiváltott hyperglykaemia és cukorbetegség, különösen a pancreatogen diabetes specifikus jellemzőit. Végül az onkodiabetológiának a daganatos betegek ellátásában betöltött helyét és szerepét igyekszünk meghatározni. Kutatásaink során részletesen felmértük az onkológiai gyakorlatban jelenleg használt klasszikus citosztatikumok, molekulárisan célzott terápiák, valamint a különböző endokrin manipulációk glükometabolikus hatásait. Ehhez közel 300 gyógyszer törzskönyvi leírását és irodalmi hátterét tekintettük át. Megállapítottuk, hogy minden harmadik daganatellenes hatóanyag kedvezőtlenül befolyásolhatja a szénhidrátháztartást. Tapasztalatainkról részletesebben további közleményeinkben számolunk be. Orv Hetil. 2022; 163(41): 1614–1628.
World Health Organization. International Agency for Research on Cancer. Global Cancer Observatory. Lyon, 2021. Available from: http://gco.iarc.fr [accessed: 2022. May 9.].
Organisation for Economic Co-operation and Development. Paris. Available from: http://data.oecd.org [accessed: 2022. May 9.].
International Diabetes Federation. Diabetes Atlas. Brussels. Available from: http://diabetesatlas.org.
Ling S, Brown K, Miksza JK, et al. Association of type 2 diabetes with cancer: a meta-analysis with bias analysis for unmeasured confounding in 151 cohorts comprising 32 million people. Diabetes Care 2020; 43: 2313–2322.
Pearson-Stuttard J, Papadimitriou N, Markozannes G, et al. Type 2 diabetes and cancer: an umbrella review of observational and mendelian randomization studies. Cancer Epidemiol Biomarkers Prev. 2021; 30: 1218–1228.
Zhu B, Qu S. The relationship between diabetes mellitus and cancers and its underlying mechanisms. Front Endocrinol (Lausanne) 2022; 13: 800995.
Van Soom T, El Bakkali S, Gebruers N, et al. The effects of chemotherapy on energy metabolic aspects in cancer patients: a systematic review. Clin Nutr. 2020; 39: 1863–1877.
Schiessel DL, Baracos VE. Barriers to cancer nutrition therapy: excess catabolism of muscle and adipose tissues induced by tumour products and chemotherapy. Proc Nutr Soc. 2018; 77: 394–402.
Busaidy NL, Farooki A, Dowlati A, et al. Management of metabolic effects associated with anticancer agents targeting the PI3K–Akt–mTOR pathway. J Clin Oncol. 2012; 30: 2919–2928.
Lin CM, Huang HL, Chu FY, et al. Association between gastroenterological malignancy and diabetes mellitus and anti-diabetic therapy: a nationwide, population-based cohort study. PLoS ONE 2015; 10: e0125421.
De A, Kuppusamy G. Metformin in breast cancer: preclinical and clinical evidence. Curr Probl Cancer 2020; 44: 100488.
Meireles CG, Pereira SA, Valadares LP, et al. Effects of metformin on endometrial cancer: systematic review and meta-analysis. Gynecol Oncol. 2017; 147: 167–180.
Levy A, Doyen J. Metformin for non-small cell lung cancer patients: oppurtunities and pitfalls. Crit Rev Oncol Hematol. 2018; 125: 41–47.
Joharatnam-Hogan N, Chambers P, Dhatariya K, et al. A guideline for the outpatient management of glycaemic control in people with cancer. Diabet Med. 2022; 39: e14636.
Hwangbo Y, Lee EK. Acute hyperglycemia associated with anti-cancer medication. Endocrinol Metab (Seoul) 2017; 32: 23–29.
Yim C, Mansell K, Hussein N, et al. Current cancer therapies and their influence on glucose control. World J Diabetes 2021; 12: 1010–1025.
Shariff AI, Syed S, Shelby RA, et al. Novel cancer therapies and their association with diabetes. J Mol Endocrinol. 2019; 62: R187–R199.
Fallahi P, Ferrari SM, Elia G, et al. Therapy of endocrine disease: endocrine-metabolic effects of treatment with multikinase inhibitors. Eur J Endocrinol. 2021; 184: R29–R40.
Wu PK, Becker A, Park JI. Growth inhibitory signaling of the Raf/MEK/ERK pathway. Int J Mol Sci. 2020; 21: 5436.
Pikó B, Bánhegyi RJ, Bassam A, et al. Are we aware of the concept and correct treatment of cachexia? [Tisztában vagyunk-e a cachexia fogalmával és korrekt kezelésével?] Onkológia 2011; 1: 183–186. [Hungarian]
Bánhegyi RJ, Rus-Gal PO, Nagy ÁK, et al. Antidiabetic therapy – a new possibility in the complex therapy of cancer? [Antidiabetikus kezelés, mint újabb lehetőség a daganatok komplex terápiájában?] Magy Onkol. 2010; 54: 315–323. [Hungarian]
Brunello A, Kapoor R, Extermann M. Hyperglycemia during chemotherapy for hematologic and solid tumors is correlated with increased toxicity. Am J Clin Oncol. 2011; 34: 292–296.
Morganstein DL, Tan S, Gore M, et al. Prevalence of diabetes in patients admitted to a cancer hospital. Br J Diabetes Vasc Dis. 2012; 12: 178–180.
Hershey DS. Importance of glycemic control in cancer patients with diabetes: treatment through end of life. Asia Pac J Oncol Nurs. 2017; 4: 313–318.
Park JH, Kim HY, Lee H, et al. A retrospective analysis to identify the factors affecting infection in patients undergoing chemotherapy. Eur J Oncol Nurs. 2015; 19: 597–603.
Zylla D, Gilmore G, Eklund J, et al. Impact of diabetes and hyperglycemia on health care utilization, infection risk, and survival in patients with cancer receiving glucocorticoids with chemotherapy. J Diabetes Complications 2019; 33: 335–339.
Liu X, Ji J, Sundquist K, et al. The impact of type 2 diabetes mellitus on cancer-specific survival: a follow-up study in Sweden. Cancer 2012; 118: 1353–1361.
Attili VS, Bapsy PP, Dadhich HK, et al. Impact of diabetes on cancer chemotherapy outcome: a retrospective analysis. Int J Diab Dev Ctries 2007; 27: 122–128.
Srokowski TP, Fang S, Hortobagyi GN, et al. Impact of diabetes mellitus on complications and outcomes of adjuvant chemotherapy in older patients with breast cancer. J Clin Oncol. 2009; 27: 2170–2176.
Duan W, Shen X, Lei J, et al. Hyperglycemia, a neglected factor during cancer progression. Biomed Res Int. 2014; 2014: 461917.
Yang IP, Miao ZF, Huang CW, et al. High blood sugar levels but not diabetes mellitus significantly enhance oxaliplatin chemoresistance in patients with stage III colorectal cancer receiving adjuvant FOLFOX6 chemotherapy. Ther Adv Med Oncol. 2019; 11: 1758835919866964.
Lee JO, Kang MJ, Byun WS, et al. Metformin overcomes resistance to cisplatin in triple-negative breast cancer (TNBC) cells by targeting RAD51. Breast Cancer Res. 2019; 21: 115.
Saraei P, Asadi I, Kakar MA, et al. The beneficial effects of metformin on cancer prevention and therapy: a comprehensive review of recent advances. Cancer Manag Res. 2019; 11: 3295–3313.
Ahn HR, Kang SY, Youn HJ, et al. Hyperglycemia during adjuvant chemotherapy as a prognostic factor in breast cancer patients without diabetes. J Breast Cancer 2020; 23: 398–409.
Lega IC, Austin PC, Fischer HD, et al. The impact of diabetes on breast cancer treatments and outcomes: a population-based study. Diabetes Care 2018; 41: 755–761.
Lee SY, Kurita N, Yokoyama Y, et al. Glucocorticoid-induced diabetes mellitus in patients with lymphoma treated with CHOP chemotherapy. Support Care Cancer 2014; 22: 1385–1390.
Feng JP, Yuan XL, Li M, et al. Secondary diabetes associated with 5-flurouracil-based chemotherapy regimens in non-diabetic patients with colorectal cancer: results from a single-centre cohort study. Colorectal Dis. 2013; 15: 27–33.
Ji GY, Jin LB, Wang RJ, et al. Incidences of diabetes and prediabetes among female adult breast cancer patients after systematic treatment. Med Oncol. 2013; 30: 687.
Nomiyama T, Yanase T. Secondary diabetes. Nihon Rinsho 2015; 73: 2008–2012.
Yim C, Hussein N, Arnason T. Capecitabine-induced hyperosmolar hyperglycaemic state. BMJ Case Rep. 2021; 14: e241109.
Goldman JW, Mendenhall MA, Rettinger SR. Hyperglycemia associated with targeted oncologic treatment: mechanisms and management. Oncologist 2016; 21: 1326–1336.
Kyriacou A, Melson E, Chen W, et al. Is immune checkpoint inhibitor-associated diabetes the same as fulminant type 1 diabetes mellitus? Clin Med (Lond). 2020; 20: 417–423.
Yun K, Daniels G, Gold K, et al. Rapid onset type 1 diabetes with anti-PD-1 directed therapy. Oncotarget 2020; 11: 2740–2746.
Gaudy C, Clévy C, Monestier S, et al. Anti-PD1 pembrolizumab can induce exceptional fulminant type 1 diabetes. Diabetes Care 2015; 38: e182–e183.
Valdez-Hernández P, Pérez-Díaz I, Soriano-Rios A, et al. Pancreatogenic diabetes, 2 onset forms and lack of metabolic syndrome components differentiate it from type 2 diabetes. Pancreas 2021; 50: 1376–1381.
Yang J, Jia B, Yan J, et al. Glycaemic adverse drug reactions from anti-neoplastics used in treating pancreatic cancer. Niger J Clin Pract. 2017; 20: 1422–1427.
Makuc J. Management of pancreatogenic diabetes: challenges and solutions. Diabetes Metab Syndr Obes. 2016; 9: 311–315.
Chai X, Chu H, Yang X, et al. Metformin increases sensitivity of pancreatic cancer cells to gemcitabine by reducing CD133+ cell populations and suppressing ERK/P70S6K signaling. Sci Rep. 2015; 5: 14404.
Yang Q, Chen C, Ran J. Capecitabine-induced severe diabetes and hypokalemia: a case report. J Med Case Rep. 2022; 16: 163.
Zhang M, Bostrom B. Allopurinol reverses mercaptopurine-induced hypoglycemia in patients with acute lymphoblastic leukemia. F1000Res. 2019; 8: 176.
Sharma PK, Misra AK, Singh V, et al. Cyclophosphamide and epirubicin-induced diabetes mellitus in breast cancer: a rare occurence. J Pharmacol Pharmacother. 2016; 7: 146–148.
Ikemura M, Hashida T. Effect of hyperglycemia on antitumor activity and survival in tumor-bearing mice receiving oxaliplatin and fluorouracil. Anticancer Res. 2017; 37: 5463–5468.
Rescigno P, di Lorenzo G. The potential detrimental effect of corticosteroids in prostate cancer. Future Oncol. 2014; 10: 325–327.
Kritharis A, Bradley TP, Budman DR. Association of diabetes mellitus with arsenic trioxide (ATO) evaluated in the treatment of acute promyelocytic leukemia (APL). J Clin Oncol. 2011; 29(15_Suppl): e19724.
Lancet JE, Moseley AB, Coutre SE, et al. A phase 2 study of ATRA, arsenic trioxide, and gemtuzumab ozogamicin in patients with high-risk APL (SWOG 0535). Blood Adv. 2020; 4: 1683–1689.
Fathallah N, Slim R, Larif S, et al. Drug-induced hyperglycaemia and diabetes. Drug Saf. 2015; 38: 1153–1168.
Perez A, Jansen Chaparro S, Saigi I, et al. Glucocorticoid-induced hyperglycemia. J Diabetes 2014; 6: 9–20.
Ye F, Wen J, Yang A, et al. The influence of hormone therapy on secondary diabetes mellitus in breast cancer: a meta-analysis. Clin Breast Cancer 2022; 22: e48–e58.
Wolin EM. The expanding role of somatostatin analogs in the management of neuroendocrine tumors. Gastrointest Cancer Res. 2012; 5: 161–168.
Haanen JB, Carbonnel F, Robert C, et al. Management of toxicities from immunotherapy: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2017; 28(Suppl 4): iv119–iv142. Erratum: Ann Oncol. 2018; 29(Suppl 4): iv264–iv266.
Stamatouli AM, Quandt Z, Perdigoto AL, et al. Collateral damage: insulin-dependent diabetes induced with checkpoint inhibitors. Diabetes 2018; 67: 1471–1480.
Corsello SM, Barnabei A, Marchetti P, et al. Endocrine side effects induced by immune checkpoint inhibitors. J Clin Endocrinol Metab. 2013; 98: 1361–1375.
Ryder M, Callahan M, Postow MA, et al. Endocrine-related adverse events following ipilimumab in patients with advanced melanoma: a comprehensive retrospective review from a single institution. Endocr Relat Cancer 2014; 21: 371–381.
Lu J, Yang J, Liang Y, et al. Incidence of immune checkpoint inhibitor-associated diabetes: a meta-analysis of randomized controlled studies. Front Pharmacol. 2019; 10: 1453.
Shieh SJ, Chou FC, Yu PN, et al. Transgenic expression of single-chain anti-CTLA-4 Fv on beta cells protects nonobese diabetic mice from autoimmune diabetes. J Immunol. 2009; 183: 2277–2285.
Brahmer JR, Lacchetti C, Schneider BJ, et al. Management of immune-related adverse events in patients treated with immune checkpoint inhibitor therapy: American Society of Clinical Oncology Clinical Practice Guideline. J Clin Oncol. 2018; 36: 1714–1768.
Stelmachowska-Banaś M, Czajka-Oraniec I. Management of endocrine immune-related adverse events of immune checkpoint inhibitors: an updated review. Endocr Connect. 2020; 9: R207–R228.
Chowdhury TA, Jacob P. Challenges in the management of people with diabetes and cancer. Diabet Med. 2019; 36: 795–802.
Liu P, Cheng H, Roberts TM, et al. Targeting the phosphoinositide 3-kinase (PI3K) pathway in cancer. Nat Rev Drug Discov. 2009; 8: 627–644.
Kakiuchi Y, Yurube T, Kakutani K, et al. Pharmacological inhibition of mTORC1 but not mTORC2 protects against human disc cellular apoptosis, senescence, and extracellular matrix catabolism through Akt and autophagy induction. Osteoarthritis Cartilage 2019; 27: 965–976.