Bevezetés: A perifériás vérben szabadon keringő tumoreredetű DNS-ek lehetővé teszik cholangiocarcinomákban a molekuláris genetikai eltérések tanulmányozását, akár a kemoterápiára adott válasz hatékony követését is. Célkitűzés: A liquid (’folyékony’) biopszia alkalmazása kedvező megoldás, hiszen a szövetinél sokkal egyszerűbben kivitelezhető, és elkerülhető az ismételt invazív szövettani mintavétel. A liquidbiopszia-alapú szekvenálás hatékonysága a tumor progressziójával és ezáltal a nagyobb mennyiségű szabad DNS felszabadulásával növekszik. Módszer: A jelen vizsgálatban klinikailag releváns pontmutációkat mutattunk ki epeúti tumorok mind szövettani, mind liquid biopsziás mintáiból. Eredmények: Újgenerációs szekvenálás alkalmazásával 33 betegből származó, szövettani és liquid biopszia során nyert DNS-mintákat analizáltunk 67 génes szolidtumor-panelt felhasználva. Megbeszélés: Dolgozatunkban egy minimálisan invazív vizsgálati megközelítést mutatunk be a cholangiocarcinoma és az epehólyag-daganat molekuláris genetikai eltéréseinek azonosítására. Következtetés: A szabad DNS diagnosztikai alkalmazása a tumorok térbeli heterogenitását tükrözi, ezáltal egy új megközelítés a precíziós onkológiai kezelésekben. Orv Hetil. 2022; 163(50): 1982–1991.
Noel MS, Hezel AF. New and emerging treatment options for biliary tract cancer. Onco Targets Ther. 2013; 6: 1545–1552.
Weinberg BA, Xiu J, Lindberg MR, et al. Molecular profiling of biliary cancers reveals distinct molecular alterations and potential therapeutic targets. J Gastrointest Oncol. 2019; 10: 652–662.
Putra J, de Abreu FB, Peterson JD, et al. Molecular profiling of intrahepatic and extrahepatic cholangiocarcinoma using next generation sequencing. Exp Mol Pathol. 2015; 99: 240–244.
Lendvai G, Szekerczés T, Illyés I, et al. Cholangiocarcinoma: classification, histopathology and molecular carcinogenesis. Pathol Oncol Res. 2020; 26: 3–15.
Horgan AM, Amir E, Walter T, et al. Adjuvant therapy in the treatment of biliary tract cancer: a systematic review and meta-analysis. J Clin Oncol. 2021; 30: 1934–1940.
Lamarca A, Hubner RA, David Ryder W, et al. Second-line chemotherapy in advanced biliary cancer: a systematic review. Ann Oncol. 2014; 25: 2328–2338.
Ben-Josef E, Guthrie KA, El-Khoueiry AB, et al. SWOG S0809: A phase II intergroup trial of adjuvant capecitabine and gemcitabine followed by radiotherapy and concurrent capecitabine in extrahepatic cholangiocarcinoma and gallbladder carcinoma. J Clin Oncol. 2015; 33: 2617–2622.
Ma N, Cheng H, Qin B, et al. Adjuvant therapy in the treatment of gallbladder cancer: a meta-analysis. BMC Cancer 2015; 15: 615.
Primrose JN, Fox RP, Palmer DH, et al. Capecitabine compared with observation in resected biliary tract cancer (BILCAP): a randomised, controlled, multicentre, phase 3 study. Lancet Oncol. 2019; 20: 663–673. Erratum: Lancet Oncol. 2019 Apr 2. PMID: 30922733.
Lamarca A, Palmer DH, Wasan HS, et al. Second-line FOLFOX chemotherapy versus active symptom control for advanced biliary tract cancer (ABC-06): a phase 3, open-label, randomised, controlled trial. Lancet Oncol. 2021; 22: 690–701.
Tamai K, Nakamura M, Mizuma M, et al. Suppressive expression of CD274 increases tumorigenesis and cancer stem cell phenotypes in cholangiocarcinoma. Cancer Sci. 2014; 105: 667–674.
Fontugne J, Augustin J, Pujals A, et al. PD-L1 expression in perihilar and intrahepatic cholangiocarcinoma. Oncotarget 2017; 8: 24644–24651.
Mody K, Starr J, Saul M, et al. Patterns and genomic correlates of PD-L1 expression in patients with biliary tract cancers. J Gastrointest Oncol. 2019; 10: 1099–1109.
Kiss E, Pápai Zs. Novel targeted therapeutic option in oncology: tropomyosin receptor tyrosine kinase inhibitors. [Új célzott terápiás lehetőség az onkológiában: tropomiozin receptor-tirozin-kináz gátlók.] Orv Hetil. 2021; 162: 1362–1369. [Hungarian]
Méhes G. Liquid biopsy for predictive mutational profiling of solid cancer: the pathologist’s perspective. J Biotechnol. 2019; 297: 66–70.
Lapin M, Oltedal S, Tjensvoll K, et al. Fragment size and level of cell-free DNA provide prognostic information in patients with advanced pancreatic cancer. J Transl Med. 2018; 16: 300.
Hungarian Hepatic-Pancreatic-Biliary (HPB) Research Group. Complex management of hepatocellular cancer. [Magyar Hepato-Pancreatico-Biliaris (HPB) Kutatócsoport. A hepatocellularis carcinoma komplex kezelése. Konszenzuskonferencia, Budapest, 2021. április 24.] Orv Hetil. 2021; 162(Suppl 2): 2–31. [Hungarian]
Sápi J, Kovács L, Drexler DA, et al. Tumor volume estimation and quasi-continuous administration for most effective bevacizumab therapy. PLOS ONE 2015; 10: e0142190.
Rachiglio AM, Esposito Abate R, Sacco A, et al. Limits and potential of targeted sequencing analysis of liquid biopsy in patients with lung and colon carcinoma. Oncotarget 2016; 7: 66595–66605.
Gaiser MR, von Bubnoff N, Gebhardt C, et al. Liquid biopsy to monitor melanoma patients. J Dtsch Dermatol Ges. 2018; 16: 405–414.
Mack PC, Banks KC, Espenschied CR, et al. Spectrum of driver mutations and clinical impact of circulating tumor DNA analysis in non-small cell lung cancer: analysis of over 8000 cases. Cancer 2020; 126: 3219–3228.
Mokánszki A, Bicskó R, Gergely L, et al. Cell-free total nucleic acid-based genotyping of aggressive lymohoma: comprehensive analysis of gene fusions and nucleotide variants by next-generation sequencing. Cancers (Basel) 2021; 13: 3032.
Rompianesi G, Di Martino M, Gordon-Weeks A, et al. Liquid biopsy in cholangiocarcinoma: current status and future perspectives. World J Gastrointest Oncol. 2021; 13: 332–350.
Samstein RM, Lee CH, Shoushtari AN, et al. Tumor mutational load predicts survival after immunotherapy across multiple cancer types. Nat Genet. 2019; 51: 202–206.
Chen X, Wu X, Wu H, et al. Camrelizumab plus gemcitabine and oxaliplatin (GEMOX) in patients with advanced biliary tract cancer: a single-arm, open-label, phase II trial. J immunother Cancer 2020; 8: e001240.
Churi CR, Shroff R, Wang Y, et al. Mutation profiling in cholangiocarcinoma: prognostic and therapeutic implications. PLoS ONE 2014; 9: e115383.
Brandi G, Farioli A, Astolfi A, et al. Genetic heterogeneity in cholangiocarcinoma: a major challenge for targeted therapies. Oncotarget 2015; 6: 14744–14753.
Nakamura H, Arai Y, Totoki Y, et al. Genomic spectra of biliary tract cancer. Nat Genet. 2015; 47: 1003–1010.
Montal R, Sia D, Montironi C, et al. Molecular classification and therapeutic targets in extrahepatic cholangiocarcinoma. J Hepatol. 2020; 73: 315–327.
Jusakul A, Cutcutache I, Yong CH, et al. Whole-genome and epigenomic landscapes of etiologically distinct subtypes of cholangiocarcinoma. Cancer Discov. 2017; 7: 1116–1135.
Mertens JC, Rizvi S, Gores GJ. Targeting cholangiocarcinoma. Biochim Biophys Acta Mol Basis Dis. 2018; 1864: 1454–1460.
Rizvi S, Khan SA, Hallemeier CL, et al. Cholangiocarcinoma – evolving concepts and therapeutic strategies. Nat Rev Clin Oncol. 2018; 15: 95–111.
Andersen JB, Spee B, Blechacz BR, et al. Genomic and genetic characterization of cholangiocarcinoma identifies therapeutic targets for tyrosine kinase inhibitors. Gastroenterology 2012; 142: 1021–1031.e15.
Sia D, Hoshida Y, Villanueva A, et al. Integrative molecular analysis of intrahepatic cholangiocarcinoma reveals 2 classes that have different outcomes. Gastroenterology 2013; 144: 829–840.
Abou-Alfa GK, Macarulla T, Javle MM, et al. Ivosidenib in IDH1-mutant, chemotherapy-refractory cholangiocarcinoma (ClarIDHy): a multicentre, randomised, double-blind, placebo-controlled, phase 3 study. Lancet Oncol. 2020; 21: 796–807. Erratum: Lancet Oncol. 2020; 21: e462.
Zhu AX, Macarulla T, Javle MM, et al. Final overall survival efficacy results of ivosidenib for patients with advanced cholangiocarcinoma with IDH1 mutation: the phase 3 randomized clinical ClarIDHy trial. JAMA Oncol. 2021; 7: 1669–1677.