Az újgenerációs szekvenáláson (NGS) alapuló diagnosztika legnagyobb előnye, hogy nagyszámú gén párhuzamos szekvenálása révén a genetikai rendellenességek kiterjedt repertoárját képes egyetlen vizsgálattal lefedni. Az analízis viszonylag kisebb költsége és az adatmennyiség kezelhetőbb mennyisége folytán a célzott génpanelek használata, illetve a teljesexom-szekvenálás (WES) a leginkább elérhető NGS-alapú módszer. Összefoglalónkban az NGS létjogosultságát vizsgáljuk gyermekkori genetikai rendellenességek diagnosztikájában. Áttekintjük az öröklött anyagcserezavarok, daganatos megbetegedések és egyéb gyermekkori genetikai rendellenességek NGS-alapú diagnosztikájában fontos szerepet játszó géneket. A kora gyermekkori rendellenességek NGS-alapú diagnosztikájának rutinszerű használata előtt számos technikai és klinikai kérdés vár még megválaszolásra. Jelenleg a legnagyobb kihívást a ritka genetikai variánsok értelmezése és a mutációk patogenitásának igazolása jelenti. Orv Hetil. 2022; 163(51): 2027–2040.
Brewington J, Clancy JP. Diagnostic testing in cystic fibrosis. Clin Chest Med. 2016; 37: 31–46.
Speicher MR, Carter NP. The new cytogenetics: blurring the boundaries with molecular biology. Nat Rev Genet. 2005; 6: 782–792.
Gahl WA, Markello TC, Toro C, et al. The National Institutes of Health Undiagnosed Diseases Program: insights into rare diseases. Genet Med. 2012; 14: 51–59.
Veltman JA, Brunner HG. De novo mutations in human genetic disease. Nat Rev Genet. 2012; 13: 565–575.
Erdmann J, Stark K, Esslinger UB, et al. Dysfunctional nitric oxide signalling increases risk of myocardial infarction. Nature 2013; 504: 432–436.
Lam HY, Clark MJ, Chen R, et al. Performance comparison of whole-genome sequencing platforms. Nat Biotechnol. 2011; 30: 78–82. Erratum: Nat Biotechnol. 2012; 30: 562.
Gilissen C, Hoischen A, Brunner HG, et al. Disease gene identification strategies for exome sequencing. Eur J Hum Genet. 2012; 20: 490–497.
Xue Y, Ankala A, Wilcox WR, et al. Solving the molecular diagnostic testing conundrum for Mendelian disorders in the era of next-generation sequencing: single-gene, gene panel, or exome/genome sequencing. Genet Med. 2015; 17: 444–451.
Sun Y, Ruivenkamp CA, Hoffer MJ, et al. Next-generation diagnostics: gene panel, exome, or whole genome? Hum Mut. 2015; 36: 648–655.
Kammermeier J, Drury S, James CT, et al. Targeted gene panel sequencing in children with very early onset inflammatory bowel disease. Evaluation and prospective analysis. J Med Genet. 2014; 51: 748–755.
Consugar MB, Navarro-Gomez D, Place EM, et al. Panel-based genetic diagnostic testing for inherited eye diseases is highly accurate and reproducible, and more sensitive for variant detection, than exome sequencing. Genet Med. 2015; 17: 253–261.
Wang J, Gotway G, Pascual JM, et al. Diagnostic yield of clinical next-generation sequencing panels for epilepsy. JAMA Neurol. 2014; 71: 650–651.
Sawyer SL, Hartley T, Dyment DA, et al. Utility of whole-exome sequencing for those near the end of the diagnostic odyssey: time to address gaps in care. Clin Genet. 2016; 89: 275–284.
Stark Z, Tan TY, Chong B, et al. A prospective evaluation of whole-exome sequencing as a first-tier molecular test in infants with suspected monogenic disorders. Genet Med. 2016; 18: 1090–1096.
Tan TY, Dillon OJ, Stark Z, et al. Diagnostic impact and cost-effectiveness of whole-exome sequencing for ambulant children with suspected monogenic conditions. JAMA Pediatr. 2017; 171: 855–862.
Hartman P, Beckman K, Silverstein K, et al. Next generation sequencing for clinical diagnostics: five year experience of an academic laboratory. Mol Genet Metab Rep. 2019; 19: 100464.
Dillon OJ, Lunke S, Stark Z, et al. Exome sequencing has higher diagnostic yield compared to simulated disease-specific panels in children with suspected monogenic disorders. Eur J Hum Genet. 2018; 26: 644–651.
Wenger AM, Guturu H, Bernstein JA, et al. Systematic reanalysis of clinical exome data yields additional diagnoses: implications for providers. Genet Med. 2017; 19: 209–214.
Eldomery MK, Coban-Akdemir Z, Harel T, et al. Lessons learned from additional research analyses of unsolved clinical exome cases. Genome Med. 2017; 9: 26.
Richards S, Aziz N, Bale S, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015; 17: 405–424.
Kalia SS, Adelman K, Bale SJ, et al. Recommendations for reporting of secondary findings in clinical exome and genome sequencing, 2016 update (ACMG SF v2.0): a policy statement of the American College of Medical Genetics and Genomics. Genet Med. 2017; 19: 249–255.
Yang Y, Muzny DM, Reid JG, et al. Clinical whole-exome sequencing for the diagnosis of Mendelian disorders. N Engl J Med. 2013; 369: 1502–1511.
Lawrence L, Sincan M, Markello T, et al. The implications of familial incidental findings from exome sequencing: the NIH Undiagnosed Diseases Program experience. Genet Med. 2014; 16: 741–750.
Di Resta C, Manzoni M, Berisso MZ, et al. Evaluation of damaging effects of splicing mutations: validation of an in vitro method for diagnostic laboratories. Clin Chim Acta 2014; 436: 276–282.
Landrum MJ, Lee JM, Benson M, et al. ClinVar: public archive of interpretations of clinically relevant variants. Nucleic Acids Res. 2016; 44(D1): D862–D868.
Fokstuen S, Makrythanasis P, Hammar E, et al. Experience of a multidisciplinary task force with exome sequencing for Mendelian disorders. Hum Genomics 2016; 10: 24.
Wolf SM, Crock BN, Van Ness B, et al. Managing incidental findings and research results in genomic research involving biobanks and archived data sets. Genet Med. 2012; 14: 361–384.
Miller DT, Lee K, Chung WK, et al. ACMG SF v3.0 list for reporting of secondary findings in clinical exome and genome sequencing: a policy statement of the American College of Medical Genetics and Genomics (ACMG). Genet Med. 2021; 23: 1381–1390. Erratum: Genet Med. 2021 Aug 3. PMID: 34012068.
Amendola LM, Dorschner MO, Robertson PD, et al. Actionable exomic incidental findings in 6503 participants: challenges of variant classification. Genome Res. 2015; 25: 305–315.
Jurgens J, Ling H, Hetrick K, et al. Assessment of incidental findings in 232 whole-exome sequences from the Baylor–Hopkins Center for Mendelian Genomics. Genet Med. 2015; 17: 782–788.
Wright CF, FitzPatrick DR, Firth HV. Paediatric genomics: diagnosing rare disease in children. Nat Rev Genet. 2018; 19: 253–268.
Christianson A, Howson CP, Modell B. Global report on birth defects: the hidden toll of dying and disabled children. March of Dimes Birth Defects Foundation, White Plains, NY, 2005.
The metabolism of tumours: investigations from the Kaiser Wilhelm Institute for Biology, Berlin-Dahlem. J Am Med Assoc. 1931; 96: 1982.
Rees DC, Williams TN, Gladwin MT. Sickle-cell disease. Lancet 2010; 376: 2018–2031.
Williams VC, Lucas J, Babcock MA, et al. Neurofibromatosis type 1 revisited. Pediatrics 2009; 123: 124–133.
Aartsma-Rus A, Ginjaar IB, Bushby K. The importance of genetic diagnosis for Duchenne muscular dystrophy. J Med Genet. 2016; 53: 145–151.
Saudi Mendeliome Group. Comprehensive gene panels provide advantages over clinical exome sequencing for Mendelian diseases. Genome Biol. 2015; 16: 134. Erratum: Genome Biol. 2015; 16: 226.
Myers CT, Mefford HC. Advancing epilepsy genetics in the genomic era. Genome Med. 2015; 7: 91.
Stalke A, Skawran B, Auber B, et al. Diagnosis of monogenic liver diseases in childhood by next-generation sequencing. Clin Genet. 2018; 93: 665–670.
Zhao L, Wang F, Wang H, et al. Next-generation sequencing-based molecular diagnosis of 82 retinitis pigmentosa probands from Northern Ireland. Hum Genet. 2015; 134: 217–230.
Abou Tayoun AN, Al Turki SH, Oza AM, et al. Improving hearing loss gene testing: a systematic review of gene evidence toward more efficient next-generation sequencing-based diagnostic testing and interpretation. Genet Med. 2016; 18: 545–553.
Ku CS, Cooper DN, Polychronakos C, et al. Exome sequencing: dual role as a discovery and diagnostic tool. Ann Neurol. 2012; 71: 5–14.
Szabó E, Balogh L, Szabó A, Szatmári I. Diagnostics of inborn errors of metabolism: laboratory approaches. [Ritka örökletes anyagcsere-betegségek diagnosztikája: laboratóriumi megközelítések.] Orv Hetil. 2017; 158: 1903–1907. [Hungarian]
Bodian DL, Klein E, Iyer RK, et al. Utility of whole-genome sequencing for detection of newborn screening disorders in a population cohort of 1,696 neonates. Genet Med. 2016; 18: 221–230.
Yubero D, Brandi N, Ormazabal A, et al. Targeted next generation sequencing in patients with inborn errors of metabolism. PLoS ONE 2016; 11: e0156359.
Ceyhan-Birsoy O, Machini K, Lebo MS, et al. A curated gene list for reporting results of newborn genomic sequencing. Genet Med. 2017; 19: 809–818.
Berg JS, Agrawal PB, Bailey DB Jr, et al. Newborn sequencing in genomic medicine and public health. Pediatrics 2017; 139: e20162252.
Holm IA, Agrawal PB, Ceyhan-Birsoy O, et al. The BabySeq project: implementing genomic sequencing in newborns. BMC Pediatr. 2018; 18: 225.
Ceyhan-Birsoy O, Murry JB, Machini K, et al. Interpretation of genomic sequencing results in healthy and ill newborns: results from the BabySeq Project. Am J Hum Genet. 2019; 104: 76–93.
Wang E, Batey A, Struble C, et al. Gestational age and maternal weight effects on fetal cell-free DNA in maternal plasma. Prenat Diagn. 2013; 33: 662–666.
Best S, Wou K, Vora N, et al. Promises, pitfalls and practicalities of prenatal whole exome sequencing. Prenat Diagn. 2018; 38: 10–19.
MacArthur DG, Manolio TA, Dimmock DP, et al. Guidelines for investigating causality of sequence variants in human disease. Nature 2014; 508: 469–476.
Rim JH, Lee JS, Jung J, et al. Systematic evaluation of gene variants linked to hearing loss based on allele frequency threshold and filtering allele frequency. Sci Rep. 2019; 9: 4583.