Az 1-es típusú neurofibromatosis autoszomális domináns öröklésmenetet mutató, klinikailag rendkívül heterogén neurocutan kórkép, amelynek kialakulásában elsődlegesen az NF1-gén intragenikus funkcióvesztéses mutációi játszanak szerepet. Ugyanakkor a molekuláris diagnosztika fejlődésének köszönhetően egyre több esetben sikerül kimutatni az NF1-gént és az azzal szomszédos régiókat érintő kópiaszámbeli variánsokat. Genotípus-fenotípus elemzések alapján a pontmutációs eltérések okozta 1-es típusú neurofibromatosis, illetve a microdeletiós eltérések okozta, ún. 17q11.2 microdeletiós szindróma elkülöníthetők egymástól. Microdeletiók az esetek 5–10%-ában figyelhetők meg, melyek méretük, töréspontjaik genomi lokalizációja és érintett géntartalmuk alapján négy különböző típusba (1-es, 2-es, 3-as és atípusos) sorolhatók. A microdeletiós betegek gyakran súlyosabb kórlefolyást mutatnak, melyből kiemelendő a malignitások emelkedett kockázata. Az összefoglaló közleménnyel, mely a neurofibromatosis-1 microdeletiós szindróma főbb jellemzőit, molekuláris genetikai hátterét és vizsgálati módszereit tárgyalja, a microdeletiós szindrómás betegek korai diagnózishoz jutásának fontosságát szeretnénk hangsúlyozni és felhívni a figyelmet a szoros nyomon követés jelentőségére. Orv Hetil. 2022; 163(51): 2041–2051.
Lammert M, Friedman JM, Kluwe L, et al. Prevalence of neurofibromatosis 1 in German children at elementary school enrollment. Arch Dermatol. 2005; 141: 71–74.
Uusitalo E, Leppävirta J, Koffert A, et al. Incidence and mortality of neurofibromatosis: a total population study in Finland. J Invest Dermatol. 2015; 135: 904–906.
DeBella K, Szudek J, Friedman JM. Use of the national institutes of health criteria for diagnosis of neurofibromatosis 1 in children. Pediatrics 2000; 105: 608–614.
Zheng H, Chang L, Patel N, et al. Induction of abnormal proliferation by nonmyelinating Schwann cells triggers neurofibroma formation. Cancer Cell 2008; 13: 117–128.
Uusitalo E, Rantanen M, Kallionpää RA, et al. Distinctive cancer associations in patients with neurofibromatosis type 1. J Clin Oncol. 2016; 34: 1978–1986.
Jett K, Friedman JM. Clinical and genetic aspects of neurofibromatosis 1. Genet Med. 2010; 12: 1–11.
Gutmann DH, Ferner RE, Listernick RH, et al. Neurofibromatosis type 1. Nat Rev Dis Primers 2017; 3: 17004.
Easton DF, Ponder MA, Huson SM, et al. An analysis of variation in expression of neurofibromatosis (NF) type 1 (NF1): evidence for modifying genes. Am J Hum Genet. 1993; 53: 305–313.
Bergoug M, Doudeau M, Godin F, et al. Neurofibromin structure, functions and regulation. Cells 2020; 9: 2365.
Marchuk DA, Saulino AM, Tavakkol R, et al. cDNA cloning of the type 1 neurofibromatosis gene: complete sequence of the NF1 gene product. Genomics 1991; 11: 931–940.
McKeever K, Shepherd CW, Crawford H, et al. An epidemiological, clinical and genetic survey of neurofibromatosis type 1 in children under sixteen years of age. Ulster Med J. 2008; 77: 160–163.
Stephens K, Kayes L, Riccardi VM, et al. Preferential mutation of the neurofibromatosis type 1 gene in paternally derived chromosomes. Hum Genet. 1992; 88: 279–282.
Trovó-Marqui AB, Tajara EH. Neurofibromin: a general outlook. Clin Genet. 2006; 70: 1–13.
Scheffzek K, Welti S. Neurofibromin: protein domains and functional characteristics. In: Upadhyaya M, Cooper ND (eds.) Neurofibromatosis type 1. Molecular and Cellular biology. Springer, Berlin, 2012; pp. 305–326.
Gutmann DH, Donahoe J, Brown T, et al. Loss of neurofibromatosis 1 (NF1) gene expression in NF1-associated pilocytic astrocytomas. Neuropathol Appl Neurobiol. 2000; 26: 361–367.
Patrakitkomjorn S, Kobayashi D, Morikawa T, et al. Neurofibromatosis type 1 (NF1) tumor suppressor, neurofibromin, regulates the neuronal differentiation of PC12 cells via its associating protein, CRMP-2. J Biol Chem. 2008; 283: 9399–9413.
Rauen KA. The RASopathies. Annu Rev Genomics Hum Genet. 2013; 14: 355–369.
Riccardi VM. Neurofibromatosis: clinical heterogeneity. Curr Probl Cancer 1982; 7: 1–34.
Legius E, Messiaen L, Wolkenstein P, et al. Revised diagnostic criteria for neurofibromatosis type 1 and Legius syndrome: an international consensus recommendation. Genet Med. 2021; 23: 1506–1513.
Büki G, Zsigmond A, Czakó M, et al. Genotype-phenotype associations in patients with type-1, type-2, and atypical NF1 microdeletions. Front Genet. 2021; 12: 673025.
Kehrer-Sawatzki H, Kluwe L, Salamon J, et al. Clinical characterization of children and adolescents with NF1 microdeletions. Childs Nerv Syst. 2020; 36: 2297–2310.
Zhang J, Tong H, Fu X, et al. Molecular characterization of NF1 and neurofibromatosis type 1 genotype-phenotype correlations in a Chinese population. Sci Rep. 2015; 5: 11291.
Cnossen MH, van der Est MN, Breuning MH, et al. Deletions spanning the neurofibromatosis type 1 gene: implications for genotype-phenotype correlations in neurofibromatosis type 1? Hum Mutat. 1997; 9: 458–464.
Vogt J, Bengesser K, Claes KB, et al. SVA retrotransposon insertion-associated deletion represents a novel mutational mechanism underlying large genomic copy number changes with non-recurrent breakpoints. Genome Biol. 2014; 15: R80.
Pasmant E, Sabbagh A, Spurlock G, et al. NF1 microdeletions in neurofibromatosis type 1: from genotype to phenotype. Hum Mutat. 2010; 31: E1506–E1518.
Messiaen L, Vogt J, Bengesser K, et al. Mosaic type-1 NF1 microdeletions as a cause of both generalized and segmental neurofibromatosis type-1 (NF1). Hum Mutat. 2011; 32: 213–219.
Kehrer-Sawatzki H, Mautner VF, Cooper DN. Emerging genotype-phenotype relationships in patients with large NF1 deletions. Hum Genet. 2017; 136: 349–376.
Pös O, Radvanszky J, Styk J, et al. Copy number variation: methods and clinical applications. Appl Sci. 2021; 11: 819.
Carter NP. Methods and strategies for analyzing copy number variation using DNA microarrays. Nat Genet. 2007; 39(Suppl 7): S16–S21.
Kehrer-Sawatzki H, Cooper DN. Classification of NF1 microdeletions and its importance for establishing genotype/phenotype correlations in patients with NF1 microdeletions. Hum Genet. 2021; 140: 1635–1649.
Bianchessi D, Morosini S, Saletti V, et al. 126 novel mutations in Italian patients with neurofibromatosis type 1. Mol Genet Genomic Med. 2015; 3: 513–525.
Nguyen R, Dombi E, Widemann BC, et al. Growth dynamics of plexiform neurofibromas: a retrospective cohort study of 201 patients with neurofibromatosis 1. Orphanet J Rare Dis. 2012; 7: 75.
Yethindra V, Tagaev T, Mamytova E, et al. A rare case of patient with neurofibromatosis type 1 in a genotype-phenotype correlation revealing a submicroscopic deletion on the long arm of chromosome 17. Clin Case Rep. 2021; 9: 2397–2399.
Roehl AC, Vogt J, Mussotter T, et al. Intrachromosomal mitotic nonallelic homologous recombination is the major molecular mechanism underlying type-2 NF1 deletions. Hum Mutat. 2010; 31: 1163–1173.
Vogt J, Mussotter T, Bengesser K, et al. Identification of recurrent type-2 NF1 microdeletions reveals a mitotic nonallelic homologous recombination hotspot underlying a human genomic disorder. Hum Mutat. 2012; 33: 1599–1609.
Bengesser K, Cooper DN, Steinmann K, et al. A novel third type of recurrent NF1 microdeletion mediated by nonallelic homologous recombination between LRRC37B-containing low-copy repeats in 17q11.2. Hum Mutat. 2010; 31: 742–751.
Zickler AM, Hampp S, Messiaen L, et al. Characterization of the nonallelic homologous recombination hotspot PRS3 associated with type-3 NF1 deletions. Hum Mutat. 2012; 33: 372–383.
Kehrer-Sawatzki H, Wahlländer U, Cooper DN, et al. Atypical NF1 microdeletions: challenges and opportunities for genotype/phenotype correlations in patients with large NF1 deletions. Genes (Basel) 2021; 12: 1639.
Well L, Döbel K, Kluwe L, et al. Genotype-phenotype correlation in neurofibromatosis type-1: NF1 whole gene deletions lead to high tumor-burden and increased tumor-growth. PLOS Genet. 2021; 17: e1009517.
Plotkin SR, Bredella MA, Cai W, et al. Quantitative assessment of whole-body tumor burden in adult patients with neurofibromatosis. PLOS ONE 2012; 7: e35711.
Kehrer-Sawatzki H, Cooper DN. Challenges in the diagnosis of neurofibromatosis type 1 (NF1) in young children facilitated by means of revised diagnostic criteria including genetic testing for pathogenic NF1 gene variants. Hum Genet. 2022; 141: 177–191.
Tucker T, Wolkenstein P, Revuz J, et al. Association between benign and malignant peripheral nerve sheath tumors in NF1. Neurology 2005; 65: 205–211.
Ferner RE, Gutmann DH. International consensus statement on malignant peripheral nerve sheath tumors in neurofibromatosis. Cancer Res. 2002; 62: 1573–1577.
Hahn N, Büschgens L, Schwedhelm-Domeyer N, et al. The orphan cytokine receptor CRLF3 emerged with the origin of the nervous system and is a neuroprotective erythropoietin receptor in locusts. Front Mol Neurosci. 2019; 12: 251.
Wegscheid ML, Anastasaki C, Hartigan KA, et al. Patient-derived iPSC-cerebral organoid modeling of the 17q11.2 microdeletion syndrome establishes CRLF3 as a critical regulator of neurogenesis. Cell Rep. 2021; 36: 109315.
Park SH, Kang N, Song E, et al. ATAD5 promotes replication restart by regulating RAD51 and PCNA in response to replication stress. Nat Commun. 2019; 10: 5718.
Wan L, Wang Y, Zhang Z, et al. Elevated TEFM expression promotes growth and metastasis through activation of ROS/ERK signaling in hepatocellular carcinoma. Cell Death Dis. 2021; 12: 325.
Venturin M, Carra S, Gaudenzi G, et al. ADAP2 in heart development: a candidate gene for the occurrence of cardiovascular malformations in NF1 microdeletion syndrome. J Med Genet. 2014; 51: 436–443.
Douglas J, Cilliers D, Coleman K, et al. Mutations in RNF135, a gene within the NF1 microdeletion region, cause phenotypic abnormalities including overgrowth. Nat Genet. 2007; 39: 963–965.
Brussa Reis L, Turchetto-Zolet AC, Fonini M, et al. The role of co-deleted genes in neurofibromatosis type 1 microdeletions: an evolutive approach. Genes (Basel) 2019; 10: 839.
Zjablovskaja P, Kardosova M, Danek P, et al. Correction to: EVI2B is a C/EBPalpha target gene required for granulocytic differentiation and functionality of hematopoietic progenitors. Cell Death Differ. 2019; 26: 198. Erratum: Cell Death Differ. 2017; 24: 705–716.
Li S, Yang F, Yang YK, et al. Increased expression of ecotropic viral integration site 2A indicates a poor prognosis and promotes osteosarcoma evolution through activating MEK/ERK pathway. J Recept Signal Transduct Res. 2019; 39: 368–372.
Hu F, Deng X, Yang X, et al. Hypoxia upregulates Rab11-family interacting protein 4 through HIF-1alpha to promote the metastasis of hepatocellular carcinoma. Oncogene 2015; 34: 6007–6017.
Venturin M, Bentivegna A, Moroni R, et al. Evidence by expression analysis of candidate genes for congenital heart defects in the NF1 microdeletion interval. Ann Hum Genet. 2005; 69: 508–516.