Baiano A. Edible insects: an overview on nutritional characteristics, safety, farming, production technologies, regulatory framework, and socio-economic and ethical implications. Trend Food Sci Technol. 2020; 100: 35–50.
da Silva Lucas AJ, de Oliveira LM, da Rocha M, et al. Edible insects: an alternative of nutritional, functional and bioactive compounds. Food Chem. 2020; 311: 126022.
Chowański S, Adamski Z, Lubawy J, et al. Insect peptides – perspectives in human diseases treatment. Curr Med Chem. 2017; 24: 3116–31521.
Costa-Neto EM. Entomotherapy, or the medicinal use of insects. J Ethnobiol. 2005; 25: 93–114.
Read BE. Insects used in Chinese medicine. J.N.C. Royal Asiat Soc. 1940; LXXI: pp. 22–32.
Courtenay M, Church JC, Ryan TJ. Larva therapy in wound management. J R Soc Med. 2000; 93: 72–74.
National Food Chain Safety Office. Speciális szabályai vannak az élelmiszercélú rovarok forgalmazásának. Available from: https://portal.nebih.gov.hu/-/specialis-szabalyai-vannak-az-elelmiszercelu-rovarok-forgalmazasanak [accessed: 2022 Dec 23]. [Hungarian]
National Food Chain Safety Office. Fenntartható állati fehérjék nyomában. Available from: https://portal.nebih.gov.hu/-/fenntarthato-allati-feherjek-nyomaban-nebih-elelmiszer-tudomany-rovareves-rovarfogyasztas-rovar [accessed: 2022 Dec 23]. [Hungarian]
Anyinam C. Ecology and ethnomedicine: Exploring links between current environmental crisis and indigenous medical practices. Soc Sci Med. 1995; 40: 321–329.
Chowanski S, Adamski Z, Lubawy J, et al. Insect peptides, perspectives in human diseases treatment. Curr Med Chem. 2017; 24: 3116–3152.
Lacerda AF, Pelegrini PB, de Oliveira DM, et al. Anti-parasitic peptides from arthropods and their application in drug therapy. Front Microbiol. 2016; 7: 91.
Hirose Y. Discover of insect parasitism and subsequent development of parasitoid research in Japan. Biol Control 2005; 32: 49–56.
ChinaKnowledge.de. Bencao gangmu. Available from: http://www.chinaknowledge.de/Literature/Science/bencaogangmu.html [accessed: 2022 Dec 23].
Zimian D, Yonghua Z, Xiwu G. Medicinal insects in China. Ecol Food Nutr. 1997; 36: 209–220.
Deyrup ST, Stagnitti NC, Perpetua MJ, et al. Drug discovery insights from medicinal beetles in traditional Chinese medicine. Chin Med Biomol Ther (Seoul) 2021; 29: 105–126.
Czaja O. The use of insects in Tibetan medicine. (L’utilisation des insectes dans la médecine tibétaine.) Available from: https://doi.org/10.4000/emscat.3994 [accessed: 2022 Dec 23].
Chakravorty J, Ghosh S, Meyer-Rochow VB. Practices of entomophagy and entomotherapy by members of the Nyishi and Galo tribes, two ethnic groups of the state of Arunachal Pradesh (North-East India). J Ethnobiol Ethnomed. 2011; 7: 5.
Choudhary P, Sharma AK, Mishra YK, et al. Entomotherapy medicinal significance of insects: a review. Pharm Innov J. 2022; SP-11: 25–29.
Nagaland. Available from: https://en.wikipedia.org/wiki/Nagaland [accessed: 2022 Dec 23].
Mozhui L, Kakati LN, Meyer-Rochow VB. Entomotherapy: a study of medicinal insects of seven ethnic groups in Nagaland, North-East India. J Ethnobiol Ethnomed. 2021; 17: 17.
Blázovics A, Csorba B. Kanpo traditional medicine nowadays is still a supported therapeutic option in Japan: Kanpo preparations. [A Kanpó hagyományos orvoslás, ma is támogatott terápiás lehetőség Japánban: Kanpó-készítmények.] Orv Hetil. 2022; 163: 386–392. [Hungarian]
Meyer-Rochow VB. Ethno-entomological observations from North Korea (officially known as the “Democratic People’s Republic of Korea”). J Ethnobiol Ethnomed. 2013; 9: 7.
Pemberton RW. Insects and other arthropods used as drugs in Korean traditional medicine. J Ethnopharm. 1999; 65: 207–216.
Ghosh S, Lee SM, Jung C, et al. Nutritional composition of five commercial edible insects in South Korea. J Asia-Pacific Entomol. 2017; 20: 686–694.
学校法人北里研究所 北里大学東洋医学総合研究所だより (第46巻第2号)漢方と鍼/2022年4月号.. Yukiko Mori. Kitasato Institute Educational Foundation Kitasato University Institute of Oriental Medicine Newsletter, Kampo and Acupuncture. 2022; 46: 2. Available from: https://www.kitasato-u.ac.jp/toui-ken/dl/public/no186.pdf [accessed: 2022 Dec 23].
Dunn RR. Poetic entomology: Insects in Japanese haiku. Am Entomol. 2000; 46: 70–72.
Mitsuhashi J. Insects as traditional foods in Japan. Ecol Food Nutr. 1997; 36(2–4): 187–199.
Available from: https://www.eat-insect.com/japan/locust.html [accessed: 2022 Dec 23].
学校法人北里研究所. Available from: https://www.kitasato.ac.jp/jp/index.html [accessed: 2022 Dec 23].
Niwa R, Nishimura T. Assembly of insect hormone enthusiasts at Nasu Highland, Japan: Report of the 3rd International Insect Hormone. 21st Ecdysone Workshop. First published: 2017. Genes Cells 2018; 23: 16–21.
Yi HY, Chowdhury M, Huang YD, et al. Insect antimicrobial peptides and their applications. Appl Microbiol Biotechnol. 2014; 98: 5807–5822.
Tonk M, Vilcinskas A. The medical potential of antimicrobial peptides from insects. Curr Top Med Chem. 2016; 17: 554–575.
Bulet P, Stöcklin R. Insect antimicrobial peptides: structures, properties and gene regulation. Protein Pept Lett. 2005; 12: 3–11.
Kuczer M, Czarniewska E, Majewska A, et al. Novel analogs of alloferon: synthesis, conformational studies, pro-apoptotic and antiviral activity. Bioorg Chem. 2016; 66: 12–20.
Chernysh S, Kozuharova I. Anti-tumor activity of a peptide combining patterns of insect alloferons and mammalian immunoglobulins in naïve and tumor antigen vaccinated mice. Int Immunopharmacol. 2013; 17: 1090–1093.
Cerón JM, Contreras-Moreno J, Puertollano E, et al. The antimicrobial peptide cecropin A induces caspase-independent cell death in human promyelocytic leukemia cells. Peptides 2010; 31: 1494–1503.
Kang BR, Kim H, Nam SH, et al. CopA3 peptide from Copris tripartitus induces apoptosis in human leukemia cells via a caspase-independent pathway. BMB Rep. 2012; 45: 85–90.
Lee E, Kim JK, Shin S, et al. Insight into the antimicrobial activities of coprisin isolated from the dung beetle, Copris tripartitus, revealed by structure-activity relationships. Biochim Biophys Acta 2013; 1828: 271–283.
Cerovský V, Budesínský M, Hovorka O, et al. Lasioglossins: three novel antimicrobial peptides from the venom of the eusocial bee Lasioglossum laticeps (Hymenoptera: Halictidae). ChemBioChem. 2009; 10: 2089–2099.
Slaninová J, Mlsová V, Kroupová H, et al. Toxicity study of antimicrobial peptides from wild bee venom and their analogs toward mammalian normal and cancer cells. Peptides 2012; 33: 18–26.
de Azevedo RA, Figueiredo CR, Ferreira AK, et al. Mastoparan induces apoptosis in B16F10-Nex2 melanoma cells via the intrinsic mitochondrial pathway and displays antitumor activity in vivo. Peptides 2015; 68: 113–119.
Nässel DR, Wegener C. A comparative review of short and long neuropeptide F signaling in invertebrates: any similarities to vertebrate neuropeptide Y signaling? Peptides 2011; 32: 1335–1355.
Gäde G, Šimek P, Clark KD, et al. Unique translational modification of an invertebrate neuropeptide: a phosphorylated member of the adipokinetic hormone peptide family. Biochem J. 2006; 393: 705–713.
Bednářová A, Kodrík D, Krishnan N. Unique roles of glucagon and glucagon-like peptides: Parallels in understanding the functions of adipokinetic hormones in stress responses in insects. Comp Biochem Physiol Part A Mol Integr Physiol. 2013; 164: 91–100.
Gruber CW. Physiology of invertebrate oxytocin and vasopressin neuropeptides. Exp Physiol. 2014; 99: 55–61.
Pleskach VA, Kozhukharova IV, Alekseenko LL, et al. Regulation of proliferation and viability of tumor cells in vitro by alloferon-1 and allostatin-1. Tsitologiia 2010; 53: 250–258. [Russian]
Antonova Y, Arik AJ, Moore W, et al. Insulin-like peptides: structure, signaling, and function. Insect Endocrinol. 2012; 30: 63–92.
Yu N, Nachman RJ, Smagghe G. Characterization of sulfakinin and sulfakinin receptor and their roles in food intake in the red flour beetle Tribolium castaneum. Gen Comp Endocrinol. 2013; 188: 196–203.
Zandawala M. Calcitonin-like diuretic hormones in insects. Insect Biochem Mol Biol. 2012; 42: 816–825.
Li S, Li L, Peng HB, et al. Advances in studies on chemical constituents, pharmacological effects and clinical application of Aspongopus Chinensis. Zhongguo Zhong Yao Za Zhi. 2020; 45: 303–311. [Chinese]
Shi YN, Tu ZC, Wang XL, et al. Bioactive compounds from the insect Aspongopus chinensis. Bioorg Med Chem Lett. 2014; 24: 5164–5169.
Lu XW, Wu Y, On the structure of aspongopusin recently isolated from Aspongopus chinensis. Fitoterapia 2013; 84: 318–320.
Yan YM. Ai J, Shi YN, et al. (±)–Aspongamide A, an N-acetyldopamine trimer isolated from the insect Aspongopus chinensis, is an inhibitor of p-Smad3. Org Lett. 2014; 16: 532–535.
Tan J, Tian Y, Cai RL, et al. Antiproliferative and proapoptotic effects of a protein component purified from Aspongopus chinensis Dallas on cancer cells in vitro and in vivo. Evid Based Complement Alternat Med. 2019; 2019: 8934794.
Tan J, Tian Y, Cai R, et al. Chemical composition and antiproliferative effects of a methanol extract of Aspongopus chinensis Dallas. Evid Based Complement Alternat Med. 2019; 2019: 2607086.
Zhang L, Guo JJ. Review on research and application on the resource of Aspongopus chinensis Dallas. J Southwest China Normal Univ. (Natural Science) 2011; 1: 151–155.
Zhao S, Tan J, Yu HM, et al. In vivo and in vitro antiproliferative and antimetastatic effects of hemolymph of Aspongopus chinensis Dallas on breast cancer cell. J Tradit Chin Med. 2021; 41: 523–529.