Az intenzív terápia fejlődésével az akut szervelégtelenség miatt kezelt betegek túlélési esélye javult. Ennek következtében nőtt azon betegek aránya, akik az akut intenzív osztályos ellátást indokló betegséget túlélve elhúzódó szervtámogató kezelésre szorulnak. A túlélők jelentős részénél egyúttal tartós egészségkárosodás figyelhető meg, amely rehabilitációt vagy tartós ápolást tesz szükségessé, illetve ismételt kórházi kezeléseket tehet indokolttá az intenzív osztály látókörén kívül is. Az akut megbetegedést követően kialakuló és tartós intenzív osztályos kezelést szükségessé tevő állapotot az intenzív terápiás szakma elhúzódó kritikus állapot (chronic critical illness – CCI) néven ismeri. Az elhúzódó kritikus állapot definíciója az irodalomban nem egységes, a legtöbb forrás a lélegeztetési, illetve ápolási napok száma alapján határozza meg a kezdetét. Ugyanakkor a változatos etiológiájú akut állapot miatt kezelt betegeknél az elhúzódó kritikus állapot során hasonló szövődmények alakulnak ki, amelyek hátterében uniformizálódó kórélettani folyamatok figyelhetők meg. Ezáltal az elhúzódó kritikus állapot valójában nemcsak az akut betegséget időben követő állapot, hanem önálló klinikai szindróma. Jellegzetes a másodlagos fertőzések, az izomgyengeség, a központi és perifériás neuropathia kialakulása, valamint a tipikus hormon- és immunrendszert érintő eltérések. A kimenetelt az akut betegség súlyossága mellett jelentősen befolyásolja a páciens korábbi esendősége és társbetegségei is. Az elhúzódó kritikus állapotú beteg kezelése összetett feladat, multidiszciplináris szemléletet és individuális terápiát igényel. A népesség további öregedésével és az akut betegségek egyre hatékonyabb kezelésével az elhúzódó kritikus állapot gyakorisága várhatóan tovább növekszik. A háttérben zajló kórélettani folyamatok áttekintése és rendszerezése az ezzel járó, nagyon jelentős orvosszakmai, ápolási, társadalmi és gazdasági terhek mérsékléséhez alapvetően fontos. Orv Hetil. 2023; 164(18): 702–712.
Girard K, Raffin TA. The chronically critically ill: to save or let die? Respir Care 1985; 30: 339–347.
MacIntyre NR. Chronic critical illness: the growing challenge to health care. Respir Care 2012; 57: 1021–1027.
Schulman RC, Mechanick JI. Metabolic and nutrition support in the chronic critical illness syndrome. Respir Care 2012; 57: 958–977.
Brummel NE, Girard TD, Pandharipande PP, et al. Prevalence and course of frailty in survivors of critical illness. Crit Care Med. 2020; 48: 1419–1426.
Carson SS, Bach PB. The epidemiology and costs of chronic critical illness. Crit Care Clin. 2002; 18: 461–476.
Bagshaw SM, Stelfox HT, Iwashyna TJ, et al. Timing of onset of persistent critical illness: a multi-centre retrospective cohort study. Intensive Care Med. 2018; 44: 2134–2144.
Desarmenien M, Blanchard-Courtois AL, Ricou B. The chronic critical illness: a new disease in intensive care. Swiss Med Wkly 2016; 146: w14336.
Hawkins RB, Raymond SL, Stortz JA, et al. Chronic critical illness and the persistent inflammation, immunosuppression, and catabolism syndrome. Front Immunol. 2018; 9: 1511.
Loss SH, Nunes DS, Franzosi OS, et al. Chronic critical illness: are we saving patients or creating victims? Rev Bras Ter Intensiva 2017; 29: 87–95.
MacIntyre NR, Epstein SK, Carson S, et al. Management of patients requiring prolonged mechanical ventilation. Chest 2005; 128: 3937–3954.
Nelson JE, Cox CE, Hope AA, et al. Chronic critical illness. Am J Respir Crit Care Med. 2010; 182: 446–454.
Marchioni A, Tonelli R, Sdanganelli A, et al. Prevalence and development of chronic critical illness in acute patients admitted to a respiratory intensive care setting. Pulmonology 2020; 26: 151–158.
Van den Berghe G. On the neuroendocrinopathy of critical illness. Perspectives for feeding and novel treatments. Am J Respir Crit Care Med. 2016; 194: 1337–1348.
Kahn JM, Le T, Angus DC, et al. The epidemiology of chronic critical illness in the United States. Crit Care Med. 2015; 43: 282–287.
Ohbe H, Matsui H, Fushimi K, et al. Epidemiology of chronic critical illness in Japan: a nationwide inpatient database study. Crit Care Med. 2021; 49: 70–78.
Darden DB, Brakenridge SC, Efron PA, et al. Biomarker evidense of the persistent inflammation, immunosuppression and catabolism syndrome (PICS) in chronic critical illness (CCI) after surgical sepsis. Ann Surg. 2021; 274: 664–673.
Téblick A, Langouche L, van den Berghe G. Anterior pituitary function in critical illness. Endocr Connect. 2019; 8: R131–R143.
Tavares M, Pang P, Laribi S, et al. Time course of dyspnea evolution in the emergency department: results from the URGENT dyspnea survey. Crit Care 2009; 13(Suppl 1): P1.
Boonen E, van den Berghe G. Endocrine responses to critical illness: novel insights and therapeutic implications. J Clin Endocrinol Metab. 2014; 99: 1569–1582.
Korompeli A, Muurlink O, Kavrochorianou N, et al. Circadian disruption of ICU patients: a review of pathways, expression, and interventions. J Crit Care 2017; 38: 269–277.
Young A, Marsh S. Steroid use in critical care. BJA Educ. 2018; 18: 129–134.
Taylor BE, Buchman TG. Is there a role for growth hormone therapy in refractory critical illness? Curr Opin Crit Care 2008; 14: 438–444.
Marchioni A, Fantini R, Antenora F, et al. Chronic critical illness: the price of survival. Eur J Clin Invest. 2015; 45: 1341–1349.
Wang W, Xu C, MA X, et al. Intensive care unit-acquired weakness: a review of recent progress with a look toward the future. Front Med (Lausanne) 2020; 7: 559789.
Fenner BP, Darden DB, Kelly LS, et al. Immunological endotyping of chronic critical illness after severe sepsis. Front Med (Lausanne) 2021; 7: 616694.
Schrijver IT, Théroude C, Roger T. Myeloid derived suppressor cells sepsis. Front Immunol. 2019; 10: 327.
Consonni FM, Porta C, Marino A, et al. Myeloid-derived suppressor cells: ductile targets in disease. Front Immunol. 2019; 10: 949.
Uhel F, Azzaoui I, Grégoire M, et al. Early expansion of circulating granulocytic myeloid-derived suppressor cells predicts development of nosocomial infections in patients with sepsis. Am J Respir Crit Care Med. 2017; 196: 315–327.
Mathias B, Delmas AL, Ozrazgat-Baslanti T, et al. Human myeloid-derived suppressor cells are associated with chronic immune suppression after severe sepsis/septic shock. Ann Surg. 2017; 265: 827–834.
Veglia F, Perego M, Gabrilovich D. Myeloid-derived suppressor cells coming of age. Nat Immunol. 2018; 19: 108–119.
Rasheed A, Rayner KJ. Macrophage responses to environmental stimuli during homeostasis and disease. Endocr Rev. 2021; 42: 407–435.
Leijte GP, Rimmelé T, Kox M, et al. Monocytic HLA-DR expression kinetics in septic shock patients with different pathogens, sites of infection and adverse outcomes. Crit Care 2020; 24: 110.
Theodorakis E, Diamantaki E, Tsatsanis C, et al. Macrophage phenotype in sepsis immunosuppression. Crit Care 2015; 19(Suppl 1): P44.
Guo Y, Patil NK, Luan L, et al. The biology of natural killer cells during sepsis. Immunology 2018; 153: 190–202.
Dong X, Liu Q, Zheng Q, et al. Alterations of B cells in immunosuppressive phase of septic shock patients. Crit Care Med. 2020; 48: 815–821.
Bergmann CB, Beckmann N, Salyer CE, et al. Lymphocyte immunosuppression and dysfunction contributing to persistent inflammation, immunosuppression, and catabolism syndrome (PICS). Shock 2021; 55: 723–741.
Gupta DL, Bhoi S, Mohan T, et al. Coexistence of Th1/Th2 and Th17/Treg imbalances in patients with post traumatic sepsis. Cytokine 2016; 88: 214–221.
Conway Morris A, Datta D, Shankar-Hari M, et al. Cell-surface signatures of immune dysfunction risk-stratify critically ill patients: INFECT study. Intensive Care Med. 2018; 44: 627–635.
Klinker MW, Lundy SK. Multiple mechanisms of immune suppression by B lymphocytes. Molecular Med. 2012; 18: 123–137.
Maddur MS, Lacroix-Desmazes S, Dimitrov JD, et al. Natural antibodies: from first-line defense against pathogens to perpetual immune homeostasis. Clin Rev Allergy Immunol. 2020; 58: 213–228.
Maddur MS, Trinath J, Rabin M, et al. Intravenous immunoglobulin-mediated expansion of regulatory T cells in autoimmune patients is associated with increased prostaglandin E2 levels in the circulation. Cell Mol Immunol. 2015; 12: 650–652.
Malbrain ML, Martin G, Ostermann M. Everything you need to know about deresuscitation. Intensive Care Med. 2022; 48: 1781–1786.
Vaara ST, Korhonen AM, Kaukonen KM, et al. Fluid overload is associated with an increased risk for 90-day mortality in critically ill patients with renal replacement therapy: data from the prospective FINNAKI study. Crit Care 2012; 16: 11–17.
Bellomo R, Cass A, Cole L, et al. An observational study fluid balance and patient outcomes in the randomized evaluation of normal vs. augmented level of replacement therapy trial. Crit Care Med. 2012; 40: 1753–1760.
Wald R, Beaubien-Souligny W, Chanchlani R, et al. Delivering optimal renal replacement therapy to critically ill patients with acute kidney injury. Intensive Care Med. 2022; 48: 1368–1381.
Truche AS, Darmon M, Bailly S, et al. Continuous renal replacement therapy versus intermittent hemodialysis in intensive care patients: impact on mortality and renal recovery. Intensive Care Med. 2016; 42: 1408–1417.
Gaudry S, Grolleau F, Barbar S, et al. Continuous renal replacement therapy versus intermittent hemodialysis as first modality for renal replacement therapy in severe acute kidney injury: a secondary analysis of AKIKI and IDEAL-ICU studies. Crit Care 2022; 26: 93.
Maguire JM, Carson SS. Strategies to combat chronic critical illness. Curr Opin Crit Care 2013; 19: 480–487.
Jobanputra AM, Scharf MT, Androulakis IP, et al. Circadian disruption in critical illness. Front Neurol. 2020; 11: 820.
Kollár D, Benedek-Tóth Z, Drozgyik A, et al. Perioperative nutritional state as a surgical risk in oncologic patients. [A perioperatív tápláltsági állapot mint kockázati tényező az onkológiai sebészetben.] Orv Hetil. 2021; 162: 504–513. [Hungarian]
Turcotte LA, Zalucky AA, Stall NM, et al. Baseline frailty as a predictor of survival after critical care: a retrospective cohort study of older adults receiving home care in Ontario, Canada. Chest 2021; 160: 2101–2111.
Silva-Obregón JA, Quintana-Díaz M, Saboya-Sánchez S, et al. Frailty as a predictor of short- and long-term mortality in critically ill older medical patients. J Crit Care 2020; 55: 79–85.
Darvall JN, Bellomo R, Paul E, et al. Routine frailty screening in critical illness: a population-based cohort study in Australia and New Zealand. Chest 2021; 160: 1292–1303.
Gardner AK, Ghita GL, Wang Z, et al. The development of chronic critical illness determines physical function, quality of life, and long-term survival among early survivors of sepsis in surgical ICUs. Crit Care Med. 2019; 47: 566–573.
Baggerman MR, van Dijk DP, Winkens B, et al. Muscle wasting associated co-morbidities, rather than sarcopenia are risk factors for hospital mortality in critical illness. J Crit Care 2020; 56: 31–36.
Pár A, Hegyi JP, Váncsa Sz, et al. Sarcopenia – 2021. Pathophysiology, diagnosis, therapy. [Sarcopenia – 2021. Patofiziológia, diagnózis, terápia.] Orv Hetil. 2021; 162: 3–12. [Hungarian]
Bagshaw SM, Stelfox HT, Iwashyna TJ, et al. Timing of onset of persistent critical illness: a multi-centre retrospective cohort study. Intensive Care Med. 2018; 44: 2134–2144.
Stortz JA, Cox MC, Hawkins RB, et al. Phenotypic heterogeneity by site of infection in surgical sepsis: a prospective longitudinal study. Crit Care 2020; 24: 203.
Rubio I, Osuchowski MF, Shankar-Hari M, et al. Current gaps in sepsis immunology: new opportunities for translational research. Lancet Infect Dis. 2019; 19: e422–e436.