A SARS-CoV-2 megjelenésével a myeloma multiplexben szenvedők leggyakoribb halálozási okának számító fertőző ágensek köre tovább bővült. Az absztrakt szövegezésekor világszerte domináló SARS-CoV-2 omikron variáns (PANGO B.1.1.529) bár kisebb valószínűséggel okoz fatális kimenetelű fertőzést immunkompetensekben a korábbi delta variánshoz (PANGO B.1.617.2) képest, hatékonyabb transzmissziós képessége miatt az átfertőzöttek incidenciája valószínűleg nem alacsony. A COVID–19 súlyos vagy kritikus lefolyásának valószínűségét növeli a myeloma multiplexben szenvedő betegek esetén az alapbetegség, annak célzott hematológiai kezelése, valamint a betegséghez társuló egyéb komorbiditások (például veseelégtelenség) okozta komplex humorális és celluláris immunszuppresszió. A minél korábban megkezdett antivirális terápiák, a pre- vagy posztexpozíciós profilaxisként alkalmazott monoklonális antitestkészítmények, valamint a rekonvaleszcensplazma-terápia megakadályozhatja a fertőzés klinikai progresszióját. Míg az átlagpopulációban a COVID–19-et kísérő, közösségben szerzett koinfekciók incidenciája nem magas, myeloma multiplex esetén a légúti vírusbetegségeket követő Streptococcus pneumoniae fertőzés kb. 150-szer nagyobb eséllyel okozhat invazív betegséget. A modern onkohematológiai kezelések hatására a myeloma multiplex mára krónikus, többszöri relapsussal kísért entitássá vált, az ebben szenvedőket a fenti két kórokozóval szemben immunizálni szükséges. Cikkünkben citokinviharral komplikált COVID–19-ben, valamint invazív Streptococcus pneumoniae betegségben szenvedő, majd kórházi ellátása során de novo myeloma multiplexszel diagnosztizált felnőtt beteg esetét ismertetjük, végül röviden áttekintjük az ezzel kapcsolatos legfontosabb irodalmi adatokat. Orv Hetil. 2023; 164(20): 763–769.
World Health Organization. Weekly epidemiological update on COVID-19 – 14 December 2022. Available from: http://www.who.int/publications/m/item/weekly-epidemiological-update-on-covid-19---14-december-2022 [accessed: December 20, 2022].
World Health Organization. WHO Director-General’s remarks at the media briefing on 2019-nCoV on 11 February 2020. Available from: http://www.who.int/director-general/speeches/detail/who-director-general-s-remarks-at-the-media-briefing-on-2019-ncov-on-11-february-2020 [accessed: December 20, 2022].
Centers for Disease Control and Prevention. New SARS-CoV-2 variant of concern identified: Omicron (B.1.1.529) variant. Available from: http://www.emergency.cdc.gov/han/2021/han00459.asp [accessed: December 20, 2022].
World Health Organization. Enhancing response to Omicron SARS-CoV-2 variant. Available from: http://www.who.int/publications/m/item/enhancing-readiness-for-omicron-(b.1.1.529)-technical-brief-and-priority-actions-for-member-states [accessed: December 20, 2022].
Stampfer SD, Goldwater MS, Bujarski S, et al. Severe breakthrough COVID-19 with a heavily mutated variant in a multiple myeloma patient 10 weeks after vaccination. Clin Infect Pract. 2022; 13: 100130.
Bladé J, Samson D, Reece D, et al. Criteria for evaluating disease response and progression in patients with multiple myeloma treated by high-dose therapy and haemopoietic stem cell transplantation. Br J Haematol. 1998; 102: 1115–1123.
Sant M, Allemani C, Tereanu C, et al. Incidence of hematologic malignancies in Europe by morphologic subtype: results of the HAEMACARE project. Blood 2010; 116: 3724–3734. Erratum: Blood 2011; 117: 3477.
National Cancer Registry. Cancer registry statistics. [Nemzeti Rákregiszter. Rákregiszter statisztika.] Available from: http://www.stat.nrr.hu/nrrstat/regi/0 [accessed: June 15, 2022]. [Hungarian]
National Cancer Institute. Cancer Stat Facts: Myeloma. Available from: http://www.seer.cancer.gov/statfacts/html/mulmy.html [accessed: December 20, 2022].
Kyle RA, Gertz MA, Witzig TE, et al. Review of 1027 patients with newly diagnosed multiple myeloma. Mayo Clin Proc. 2003; 78: 21–33.
Nucci M, Anaissie E. Infections in patients with multiple myeloma in the era of high-dose therapy and novel agents. Clin Infect Dis. 2009; 49: 1211–1225.
Hardi A, Varga G, Nagy Zs, et al. Long-time progression-free survival in relapsed, refractory multiple myeloma with the oral ixazomib-lenalidomide-dexamethasone regime. [Hosszú távú progressziómentes túlélés relabált, refrakter myeloma multiplex tisztán orális ixazomib-lenalidomid-dexametazon kezelésével.] Orv Hetil. 2021; 162: 1451–1458. [Hungarian]
Van de Donk NW, Pawlyn C, Yong KL. Multiple myeloma. Lancet 2021; 397(10272): 410–427.
World Health Organization. Living guidance for clinical management of COVID-19. Available from: https://www.who.int/publications/i/item/WHO-2019-nCoV-clinical-2021-2 [accessed: December 20, 2022].
Kásler M. (ed.) Handbook for the prevention and treatment of infections (COVID–19) caused by the new coronavirus (SARS-CoV-2) identified in 2020. [Kásler M. (szerk.) A 2020. évben azonosított új koronavírus (SARS-CoV-2) okozta fertőzések (COVID–19) megelőzésének és terápiájának kézikönyve.] Emberi Erőforrások Minisztériuma, Budapest, 2021. [Hungarian]
Avivi I, Balaban R, Shragai T, et al. Humoral response rate and predictors of response to BNT162b2 mRNA COVID19 vaccine in patients with multiple myeloma. Br J Haematol. 2021; 195: 186–193.
Stampfer SD, Goldwater MS, Jew S, et al. Response to mRNA vaccination for COVID-19 among patients with multiple myeloma. Leukemia 2021; 35: 3534–3541.
Bitoun S, Henry J, Vauloup-Fellous C, et al. Response to COVID-19 mRNA vaccination in multiple myeloma is conserved but impaired compared to controls. J Hematol Oncol. 2021; 14: 166.
Kurteva E, Vasilev G, Tumangelova-Yuzeir K, et al. Interferon-gamma release assays outcomes in healthy subjects following BNT162b2 mRNA COVID-19 vaccination. Rheumatol Int. 2022; 42: 449–456.
Ramasamy K, Salder R, Jeans S, et al. Immune response to COVID-19 vaccination is attenuated by poor disease control and antimyeloma therapy with vaccine driven divergent T-cell response. Br J Haematol. 2022; 197: 293–301.
Barreiro P, Sanz JC, San Román J, et al. A pilot study for the evaluation of an Interferon Gamma Release Assay (IGRA) to measure T-cell immune responses after SARS-CoV-2 infection or vaccination in a unique cloistered cohort. J Clin Microbiol. 2022; 60: e0219921.
Bird S, Panopoulou A, Shea RL, et al. Response to first vaccination against SARS-CoV-2 in patients with multiple myeloma. Lancet Haematol. 2021; 8: e389–e392.
Wang B, Van Oekelen O, Mouhieddine TH, et al. A tertiary center experience of multiple myeloma patients with COVID-19: lessons learned and the path forward. J Hematol Oncol. 2020; 13: 94.
Engelhardt M, Shoumariyeh K, Rösner A, et al. Clinical characteristics and outcome of multiple myeloma patients with concomitant COVID-19 at Comprehensive Cancer Centers in Germany. Haematologica 2020; 105: 2872–2878.
Chari A, Samur MK, Martinez-Lopez J, et al. Clinical features associated with COVID-19 outcome in multiple myeloma: first results from the International Myeloma Society data set. Blood 2020; 136: 3033–3040.
Hultcrantz M, Richter J, Rosenbaum CA, et al. COVID-19 infections and clinical outcomes in patients with multiple myeloma in New York City: a cohort study from five academic centers. Blood Cancer Discov. 2020; 1: 234–243. Erratum: Blood Cancer Discov. 2020; 1: 290.
Ludwig H, Sonneveld P, Facon T, et al. COVID-19 vaccination in patients with multiple myeloma: a consensus of the European Myeloma Network. Lancet Haematol. 2021; 8: e934–e946.
Centers for Disease Control and Prevention. COVID-19 vaccines for people who are moderately or severely immunocompromised. Available from: http://www.cdc.gov/coronavirus/2019-ncov/vaccines/recommendations/immuno.html [accessed: December 20, 2022].
Fábián Á. The role of SARS-CoV-2 antibody therapy in the treatment of COVID–19. [A SARS-CoV-2-ellenes antitestekkel végzett terápia helye a COVID–19 kezelésében.] Orv Hetil. 2021; 162: 2030–2039. [Hungarian]
Gottlieb RL, Vaca CE, Paredes R, et al. Early remdesivir to prevent progression to severe Covid-19 in outpatients. N Engl J Med. 2022; 386: 305–315.
Backhaus E, Berg S, Andersson R, et al. Epidemiology of invasive pneumococcal infections: manifestations, incidence and case fatality rate correlated to age, gender and risk factors. BMC Infect Dis. 2016; 16: 367.
Wong A, Marrie TJ, Garg S, et al. Increased risk of invasive pneumococcal disease in haematological and solid-organ malignancies. Epidemiol Infect. 2010; 138: 1804–1810.
Ludwig H, Boccadoro M, Moreau P, et al. Recommendations for vaccination in multiple myeloma: a consensus of the European Myeloma Network. Leukemia 2021; 35: 31–44.
Hughes S, Troise O, Donaldson H, et al. Bacterial and fungal coinfection among hospitalized patients with COVID-19: a retrospective cohort study in a UK secondary-care setting. Clin Microbiol Infect. 2020; 26: 1395–1399.
Fehér Á, Szarvas Z, Lehoczki A, et al. Co-infections in COVID-19 patients and correlation with mortality rate. Minireview. Physiol Int. 2022; 109: 1–8.
Karaba SM, Jones G, Helsel T, et al. Prevalence of co-infection at the time of hospital admission in COVID-19 patients. A multicenter study. Open Forum Infect Dis. 2021; 8: ofaa578.
Lansbury L, Lim B, Baskaran V, et al. Co-infections in people with COVID-19: a systematic review and meta-analysis. J Infect. 2020; 81: 266–275.
Langford BJ, So M, Leung V, et al. Predictors and microbiology of respiratory and bloodstream bacterial infection in patients with COVID-19: living rapid review update and meta-regression. Clin Microbiol Infect. 2022; 28: 491–501.