Az ultrahang alkalmazása az aneszteziológiai és intenzív terápiás eszköztár mára elengedhetetlen feltétele mind az invazív beavatkozások pontos kivitelezése, mind az ágy melletti diagnosztika során. A mellkas és a tüdő vizsgálatai a képalkotás nehézségei ellenére gyorsan fejlődő területet jelentenek, a COVID–19-világjárvány kihívásai és a közelmúlt eseményei pedig nagyobb lendületet adtak a terület kutatásának. Az intenzív terápia egyre nagyobb tapasztalattal alkalmazza e módszereket differenciáldiagnosztikára, az állapotsúlyosság felmérésére és a terápia optimalizálására. A műtői anesztézia és a perioperatív ellátás kis módosításokkal, de szintén képes hasznosítani ezeket az eredményeket. A jelen összefoglalóban a szerzők sorra veszik a tüdő ultrahangvizsgálatának diagnosztikus jelentőségű műtermékeit, valamint a kvantitatív vizsgálatok alapjait, illetve azokat az eljárásokat, amelyek általános anesztézia során kellő irodalmi megalapozottsággal bírhatnak a betegbiztonság fokozásában a légútbiztosítás, az intraoperatív lélegeztetés finomhangolása, műtét alatti légzészavarok, posztoperatív prognosztika terén. Irodalmi összefoglalónk célja egyúttal az is, hogy rávilágítsunk azokra a területekre, amelyeken a közeljövőben technológiai vagy tudományos jelentőségű újítások várhatók. Orv Hetil. 2023; 164(22): 864–870.
Lichtenstein DA, Mezière GA. Relevance of lung ultrasound in the diagnosis of acute respiratory failure: the BLUE protocol. Chest 2008; 134: 117–125.
Touw HR, Schuitemaker AE, Daams F, et al. Routine lung ultrasound to detect postoperative pulmonary complications following major abdominal surgery: a prospective observational feasibility study. Ultrasound J. 2019; 11: 20.
Volpicelli G, Elbarbary M, Blaivas M, et al. International evidence-based recommendations for point-of-care lung ultrasound. Intensive Care Med. 2012; 38: 577–591.
Papp E, Pusztai É, Herendi EA, et al. Treatment of patients with malignant pleural effusion in a tertiary oncology center during the COVID–19 pandemic. [Malignus pleuralis effusiókkal küzdő betegek ellátása egy regionális onkológiai központban a COVID–19-pandémia időszakában.] Orv Hetil. 2022; 163: 1015–1022. [Hungarian]
Balla B, Fülesdi B, Végh T. Anesthesia and perioperative considerations for patients with prior SARS-CoV-2 infection. [Korábban SARS-CoV-2-fertőzésen átesett betegek műtéti érzéstelenítése és perioperatív ellátása.] Orv Hetil. 2022; 163: 695–701. [Hungarian]
Hussain A, Via G, Melniker L, et al. Multi-organ point-of-care ultrasound for COVID-19 (PoCUS4COVID): international expert consensus. Crit Care 2020; 24: 702.
Soldati G, Smargiassi A, Inchingolo R, et al. Proposal for international standardization of the use of lung ultrasound for patients with COVID-19: a simple, quantitative, reproducible method. J Ultrasound Med. 2020; 39: 1413–1419.
Vetrugno L, Bove T, Orso D, et al. Our Italian experience using lung ultrasound for identification, grading and serial follow-up of severity of lung involvement for management of patients with COVID-19. Echocardiography 2020; 37: 625–627.
Volpicelli G, Gargani L. Sonographic signs and patterns of COVID-19 pneumonia. Ultrasound J. 2020; 12: 22.
Volpicelli G, Gargani L, Perlini S, et al. Lung ultrasound for the early diagnosis of COVID-19 pneumonia: an international multicenter study. Intensive Care Med. 2021; 47: 444–454.
Lichtenstein D, Mezière G, Biderman P, et al. The comet-tail artifact. An ultrasound sign of alveolar-interstitial syndrome. Am J Respir Crit Care Med. 1997; 156: 1640–1646.
Lichtenstein DA, Lascols N, Mezière G, et al. Ultrasound diagnosis of alveolar consolidation in the critically ill. Intensive Care Med. 2004; 30: 276–281.
Lichtenstein D, Mezière G, Biderman P, et al. The comet-tail artifact: an ultrasound sign ruling out pneumothorax. Intensive Care Med. 1999; 25: 383–388.
Lichtenstein DA, Lascols N, Prin S, et al. The “lung pulse”: an early ultrasound sign of complete atelectasis. Intensive Care Med. 2003; 29: 2187–2192.
Rajan S, Surendran J, Paul J, et al. Rapidity and efficacy of ultrasonographic sliding lung sign and auscultation in confirming endotracheal intubation in overweight and obese patients. Indian J Anaesth. 2017; 61: 230–234.
Sustić A, Protić A, Cicvarić T, et al. The addition of a brief ultrasound examination to clinical assessment increases the ability to confirm placement of double-lumen endotracheal tubes. J Clin Anesth. 2010; 22: 246–249.
Lichtenstein D. Lung ultrasound of the critically ill: the BLUE protocol. Springer, London, 2016.
Rock P, Rich PB. Postoperative pulmonary complications. Curr Opin Anaesthesiol. 2003; 16: 123–131.
Smith PR, Baig MA, Brito V, et al. Postoperative pulmonary complications after laparotomy. Respiration 2010; 80: 269–274.
Chiumello D, Mongodi S, Algieri I, et al. Assessment of lung aeration and recruitment by CT scan and ultrasound in acute respiratory distress syndrome patients. Crit Care Med. 2018; 46: 1761–1768.
Bouhemad B, Brisson H, Le-Guen M, et al. Bedside ultrasound assessment of positive end-expiratory pressure-induced lung recruitment. Am J Respir Crit Care Med. 2011; 183: 341–347.
Mongodi S, Bouhemad B, Orlando A, et al. Modified lung ultrasound score for assessing and monitoring pulmonary aeration. Ultraschall Med. 2017; 38: 530–537.
Mongodi S, Pozzi M, Orlando A, et al. Lung ultrasound for daily monitoring of ARDS patients on extracorporeal membrane oxygenation: preliminary experience. Intensive Care Med. 2018; 44: 123–124.
Orosz G, Gyombolai P, Tóth JT, et al. Reliability and clinical correlations of semi-quantitative lung ultrasound on BLUE points in COVID-19 mechanically ventilated patients: the ’BLUE-LUSS’ – a feasibility clinical study. PLoS ONE 2022; 17: e0276213.
Monastesse A, Girard F, Massicotte N, et al. Lung ultrasonography for the assessment of perioperative atelectasis: a pilot feasibility study. Anesth Analg. 2017; 124: 494–504.
Smargiassi A, Zanforlin A, Perrone T, et al. Vertical artifacts as lung ultrasound signs: trick or trap? Part 2. An accademia di ecografia toracica position paper on B-lines and sonographic interstitial syndrome. J Ultrasound Med. 2023; 42: 279–292.
Frassanito L, Sonnino C, Pitoni S, et al. Lung ultrasound to monitor the development of pulmonary atelectasis in gynecologic oncologic surgery. Minerva Anestesiol. 2020; 86: 1287–1295.
Rothen HU, Sporre B, Engberg G, et al. Re-expansion of atelectasis during general anaesthesia: a computed tomography study. Br J Anaesth. 1993; 71: 788–795.
Allegranzi B, Zayed B, Bischoff P, et al. New WHO recommendations on intraoperative and postoperative measures for surgical site infection prevention: an evidence-based global perspective. Lancet Infect Dis. 2016; 16: e288–e303.
Kim BR, Lee S, Bae H, et al. Lung ultrasound score to determine the effect of fraction inspired oxygen during alveolar recruitment on absorption atelectasis in laparoscopic surgery: a randomized controlled trial. BMC Anesthesiol. 2020; 20: 173.
Cylwik J, Buda N. Lung ultrasonography in the monitoring of intraoperative recruitment maneuvers. Diagnostics (Basel) 2021; 11: 276.
Cylwik J, Buda N. The impact of ultrasound-guided recruitment maneuvers on the risk of postoperative pulmonary complications in patients undergoing general anesthesia. J Ultrason. 2022; 22: e6–e11.
Lichtenstein D. 8. The pleural line. In: Lichtenstein D. Lung ultrasound of the critically ill: the BLUE protocol. Springer, London, 2016; pp. 63–64.
Lichtenstein D. 10. The A-profile. In: Lichtenstein D. Lung ultrasound of the critically ill: the BLUE protocol. Springer, London, 2016; pp. 67–78.
Xirouchaki N, Magkanas E, Vaporidi K, et al. Lung ultrasound in critically ill patients: comparison with bedside chest radiography. Intensive Care Med. 2011; 37: 1488–1493.
Fuchs-Buder T, Romero CS, Lewald H, et al. Peri-operative management of neuromuscular blockade: a guideline from the European Society of Anaesthesiology and Intensive Care. Eur J Anaesthesiol. 2023; 40: 82–94.
Pöpping DM, Elia N, Marret E, et al. Protective effects of epidural analgesia on pulmonary complications after abdominal and thoracic surgery: a meta-analysis. Arch Surg. 2008; 143: 990–999.
Zieleskiewicz L, Papinko M, Lopez A, et al. Lung ultrasound findings in the postanesthesia care unit are associated with outcome after major surgery: a prospective observational study in a high-risk cohort. Anesth Analg. 2021; 132: 172–181.
Szabó M, Bozó A, Darvas K, et al. The role of ultrasonographic lung aeration score in the prediction of postoperative pulmonary complications: an observational study. BMC Anesthesiol. 2021; 21: 19.
Bouhemad B, Mojoli F, Nowobilski N, et al. Use of combined cardiac and lung ultrasound to predict weaning failure in elderly, high-risk cardiac patients: a pilot study. Intensive Care Med. 2020; 46: 475–484.
Almási R. Ultrasound imaging has a potential to exhibit biotechnical advance in perioperative pain management. [Az ultrahang-képalkotás alkalmazása biotechnikai előrelépés a perioperatív fájdalomcsillapításban.] Orv Hetil. 2019; 160: 573–584. [Hungarian]
Kumar A, Weng Y, Graglia S, et al. Interobserver agreement of lung ultrasound findings of COVID-19. J Ultrasound Med. 2021; 40: 2369–2376.
Rouby JJ, Arbelot C, Gao Y, et al. Training for lung ultrasound score measurement in critically ill patients. Am J Respir Crit Care Med. 2018; 198: 398–401.
Allinovi M, Hayes W. Simplified 8-site lung ultrasound examination to assess fluid overload in children on haemodialysis. Clin Kidney J. 2021; 14: 1851–1852.
Demi L. Lung ultrasound: the future ahead and the lessons learned from COVID-19. J Acoust Soc Am. 2020; 148: 2146.
Almási R, Bőhm T, Faluhelyi N. (eds.) Use of ultrasound in anaesthesia and intensive therapy. [Almási R, Bőhm T, Faluhelyi N. (szerk.) Az ultrahang használata az aneszteziológiában és az intenzív terápiában.] Medicina Könyvkiadó, Budapest, 2018. [Hungarian]