A COVID–19-pandémia során fellépő Clostridioides difficile fertőzés incidenciájával kapcsolatban egymással ellentétes eredmények ismertek: számos tanulmány szerint növekedett, míg más tanulmányok szerint csökkent. A második COVID–19-hullám tetőfokán idegsebészeti posztoperatív őrzőnkben 11, intenzív ellátást igénylő beteget kezeltünk. A 11 betegből 7 COVID–19-pozitív lett, és közülük 4 betegnél még C. difficile fertőzés is kialakult. A 4-ből 2 beteget elveszítettünk. Bár megfigyeléseinket kevés beteg ellátása során gyűjtöttük, úgy ítéljük meg, hogy súlyos állapotú betegeknél a SARS-CoV-2 és a C. difficile együttes fertőzése többletkockázatot jelent. A COVID–19-ben alkalmazott, széles spektrumú szisztémás antibiotikumok használata növelheti a C. difficile infekció rizikóját. Jól átgondolt infekciókontroll, a megfelelő higiéné betartása, az alkoholos kézfertőtlenítők mellett a rendszeres szappanos kézmosások mérsékelhetik a nosocomialis C. difficile fertőzések számát. Orv Hetil. 2024; 165(12): 464–469.
During the COVID–19 pandemic, opposite results have been reported regarding the incidence of Clostridioides difficile infection: many studies show an increase, while others a decrease. At the peak of the second wave of COVID–19-pandemic, we treated 11 patients requiring intensive care in our neurosurgery postoperative ward. 7 out of 11 patients tested positive for SARS-CoV-2 and 4 of them even developed C. difficile infection. Out of 4, 2 patients died. Wide-spectrum systemic antibiotics used in the treatment of COVID–19 may increase the risk of C. difficile infection. The development of nosocomial C. difficile can be mitigated by well-thought-out infection control, proper hygiene, regular use of soap beside alcoholic hand sanitizers and strict control of the use of antibiotics. Orv Hetil. 2024; 165(12): 464–469.
World Health Organization. WHO COVID-19 dashboard. Available from: https://covid19.who.int/ [accessed: 28 Jan, 2024].
Váradi A, Ferenci T, Falus A. The coronavirus-induced COVID–19 pandemic. Previous experiences and scientific evidences at the end of March, 2020. [A koronavírus okozta COVID–19-pandémia. Korábbi tapasztalatok és tudományos evidenciák 2020. március végén.] Orv Hetil. 2020; 161: 644–651. [Hungarian]
Korsós A, Kupcsulik Sz, Lovas A, et al. Diagnostic consideration and bedside estimation of the prognosis in COVID–19 patients. [Diagnosztikus lépések és a betegség prognózisának becslése COVID–19-fertőzött betegeken.] Orv Hetil. 2020; 161: 667–671. [Hungarian]
Divani AA, Andalib S, Napoli M, et al. Coronavirus disease 2019 and stroke: clinical manifestations and pathophysiological insights. J Stroke Cerebrovasc Dis. 2020; 29: 104941.
Nobel YR, Phipps M, Zucker J, et al. Gastrointestinal symptoms and COVID-19: a case-control study from the United States. Gastroenterology 2020; 159: 373–375.e2.
Laszkowska M, Kim J, Faye AE, et al. Prevalence of Clostridioides difficile and other gastrointestinal pathogens in patients with COVID‑19. Dig Dis Sci. 2021; 66: 4398–4405.
Sandhu A, Tillotson G, Polistico J, et al. Clostridioides difficile in COVID-19 patients, Detroit, Michigan, USA, March–April 2020. Emerg Infect Dis. 2020; 26: 2272–2274.
Hajifathalian K, Krisko T, Mehta A, et al. Gastrointestinal and hepatic manifestations of 2019 novel coronavirus disease in a large cohort of infected patients from New York: clinical implications. Gastroenterology 2020; 159: 1137–1140.e2.
Talley NJ, Holtmann GJ, Jones M, et al. Zonulin in serum as a biomarker fails to identify the IBS, functional dyspepsia and non-coeliac wheat sensitivity. Gut 2020; 69: 1719–1722.
Sharma L, Riva A. Intestinal barrier function in health and disease. Any role of SARS-CoV-2? Microorganisms 2020; 8: 1744.
Chen Y, Chen L, Deng Q, et al. The presence of SARS-CoV-2 RNA in the feces of COVID-19 patients. J Med Virol. 2020; 92: 833–840.
Cheung KS, Hung IF, Chan PP, et al. Gastrointestinal manifestations of SARS-CoV-2 infection and virus load in fecal samples from a Hong Kong cohort: systematic review and meta-analysis. Gastroenterology 2020; 159: 81–95.
Wong MC, Huang J, Lai C, et al. Detection of SARS-CoV-2 RNA in fecal specimens of patients with confirmed COVID-19. A meta-analysis. J Infect. 2020; 81: e31–e38.
Pesti A, Gyömörei Cs, Juhász P, et al. Detection of SARS-CoV-2 proteins by immunohistochemistry in human tissues. Pathology collaborative analysis. [SARS-CoV-2-fehérjék kimutatása immunhisztokémiai módszerrel emberi szövetekben. Patológiai körvizsgálat.] Orv Hetil. 2022; 163: 975–983. [Hungarian]
Lin L, Jiang X, Zhang Z, et al. Gastrointestinal symptoms of 95 cases with SARS-CoV-2 infection. Gut 2020; 69: 997–1001.
Ng SC, Tilg H. COVID-19 and the gastrointestinal tract: more than meets the eye. Gut 2020; 69: 973–974.
Angyal K, Tajthy AM, Drácz B, et al. The most common gastrointestinal alterations in patients with post-COVID syndrome. [A poszt-COVID-szindrómával diagnosztizált betegek leggyakoribb gastrointestinalis eltérései.] Orv Hetil. 2023; 164: 1206–1212. [Hungarian]
Yeoh YK, Zuo T, Lui GC, et al. Gut microbiota composition reflects disease severity and dysfunctional immune responses in patients with COVID-19. Gut 2021; 70: 698–706.
Szekanecz Z, Vályi-Nagy I. Post-acute COVID–19 syndrome. [Posztakut COVID–19 szindróma.] Orv Hetil. 2021; 162: 1067–1078. [Hungarian]
Tamási J, Kalabay L. Monitoring the development of post-COVID–19 syndrome. [Poszt-COVID–19-szindrómás esetek kialakulásának követése.] Orv Hetil. 2022; 163: 335–342. [Hungarian]
Zuo T, Zhang F, Lui GCY, et al. Alterations in gut microbiota of patients with COVID-19 during time of hospitalization. Gastroenterology 2020; 159: 944–955.e8.
Schirmer M, Smeekens SP, Vlamakis H, et al. Linking the human gut microbiome to inflammatory cytokine production capacity. Cell 2016; 167: 1125–1136.e8. Erratum: Cell 2016; 167: 1897.
Vaughn VM, Gandhi TN, Petty LA, et al. Empiric antibacterial therapy and community-onset bacterial coinfection in patients hospitalized with COVID-19: a multi-hospital cohort study. Clin Infect Dis. 2020: 72: e533–e541.
Zsuffa JA, Koszovácz V, Berente DB, et al. Impact of the third wave of the COVID–19 pandemic on the lifestyle, mental and physical health of the Hungarian population over 60. [A COVID–19-pandémia harmadik hullámának hatása a 60 év feletti magyar lakosság életmódjára, mentális és fizikai egészségére.] Orv Hetil. 2022; 163: 1215–1223. [Hungarian]
Végh T, László I, Juhász M, et al. Practical aspects of anesthetic and perioperative care for COVID–19 patients. [A COVID–19-fertőzött betegek anesztéziájának és perioperatív ellátásának gyakorlati szempontjai.] Orv Hetil. 2020; 161: 692–695. [Hungarian]
Granata G, Bartolini A, Codeluppi M, et al. The burden of Clostridioides difficile infection during the COVID-19 pandemic: a retrospective case-control study in Italian hospitals. J Clin Med. 2020; 9: 3855.
Spigaglia P. COVID-19 and Clostridioides difficile infection (CDI): possible implications for elderly patients. Anaerobe 2020; 64: 102233.
Horvat S, Rupnik M. Interactions Between Clostridioides difficile and fecal microbiota in in vitro batch model: growth, sporulation, and microbiota changes. Front Microbiol. 2018; 9: 1633.
Bacci S, Mølbak K, Kjeldsen M, et al. Binary toxin and death after Clostridium difficile infection. Emerg Infect Dis. 2011; 17: 976–982.
Hernández-García R, Garza-González E, Miller M, et al. Application of the ATLAS score for evaluating the severity of Clostridium difficile infection in teaching hospitals in Mexico. Braz J Infect Dis. 2015; 19: 399–402.
Charlson ME, Pompei P, Ales KL, et al. A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J Chronic Dis. 1987; 40: 373–383.
Cammarota G, Ianiro G, Gasbarrini A. Fecal microbiota transplantation for the treatment of Clostridium difficile infection: a systematic review. J Clin Gastroenterol. 2014; 48: 693–702.
Ramesh AS, Munoz Tello C, Jamil D, et al. Role of fecal microbiota transplantation in reducing Clostridioides difficile infection-associated morbidity and mortality: a systematic review. Cureus 2022; 14: e28402.
McDonald EG, Dendukuri N, Frenette C, et al. Time-series analysis of health care-associated infections in a new hospital with all private rooms. JAMA Intern Med. 2019; 179: 1501–1506.
Jullian-Desayes I, Landelle C, Mallaret MR, et al. Clostridium difficile contamination of health care workers’ hands and its potential contribution to the spread of infection: review of the literature. Am J Infect Control. 2017; 45: 51–58.
Landelle C, Verachten M, Legrand P, et al. Contamination of healthcare workers’ hands with Clostridium difficile spores after caring for patients with C. difficile infection. Infect Control Hosp Epidemiol. 2014; 35: 10–15. Erratum: Infect Control Hosp Epidemiol. 2014; 35: 331.
Louh IK, Greendyke WG, Hermann EA, et al. Clostridium difficile infection in acute care hospitals: systematic review and best practices for prevention. Infect Control Hosp Epidemiol. 2017; 38: 476–482.
Bentivegna E, Alessio G Spuntarelli V, et al. Impact of COVID-19 prevention measures on risk of health care-associated Clostridium difficile infection. Am J Infect Control. 2021; 49: 640–642.
Blanco-Melo D, Nilsson-Payant BE, Liu WC, et al. Imbalanced host response to SARS-CoV-2 drives development of COVID-19. Cell 2020; 181: 1036–1045.e9.
Cha MH, Regueiro M, Sandhu DS. Gastrointestinal and hepatic manifestations of COVID-19. A comprehensive review. World J Gastroenterol. 2020; 26: 2323–2332.
Azimirad M, Noori M, Raeisi, et al. How does COVID-19 pandemic impact on incidence of Clostridioides difficile infection and exacerbation of its gastrointestinal symptoms? Front Med. 2021; 8: 775063.
Granata G, Petrosillo N, Moghazi SA, et al. The burden of Clostridioides difficile infection in COVID-19 patients: a systematic review and meta-analysis. Anaerobe 2022; 74: 102484.
Awan RU, Gangu K, Nguyen A, et al. COVID-19 and Clostridioides difficile coinfection outcomes among hospitalized patients in the United States: an insight from National Inpatient Database. Infect Dis Rep. 2023; 15: 279–291.
Khanna S, Pardi D. Fecal microbiota transplantation for recurrent Clostridioidesdifficile infection. The COVID-19 era. Am J Gastroenterol. 2020; 115: 971–974.
Ianiro G, Bibbò S, Masucci L. Maintaining standard volumes, efficacy and safety, of fecal microbiota transplantation for C. difficile infection during the COVID-19 pandemic: a prospective cohort study. Dig Liver Dis. 2020; 52: 1390–1395.
Rawson TM, Moore LS, Castro-Sánchez E, et al. COVID-19 and the potential long-term impact on antimicrobial resistance. J Antimicrob Chemother. 2020; 75: 1681–1684.