A stroke világszerte a második leggyakoribb halálok, illetve a rokkantságot okozó harmadik leggyakoribb betegség. A diabetes minden formája fokozott cardiovascularis veszélyeztetettséggel jár, és a kockázat különösen nagy 2-es típusú cukorbetegségben. A stroke rizikója 1,5−2-szeres az azonos életkorú nem diabetesesekhez képest, és a manifesztációtól eltelt idővel arányosan emelkedik. Több antidiabetikumcsoport – kiemelten a tiazolidindionok, a nátrium-glükóz-kotranszporter-2-gátlók és a glükagonszerűpeptid-1-receptor-agonisták − esetében igazolódott keringési kockázatot csökkentő természetük. Különösen ez utóbbi csoport lehetséges cardio- és neuroprotectiv szerepe került az utóbbi időben az érdeklődés előterébe. Munkánk áttekinti a diabetest kísérő stroke-előfordulás jellegzetességeit, a glükagonszerűpeptid-1-receptor-agonisták kockázatcsökkentő és potenciális stroke-megelőző hatásának patogenetikai hátterét, valamint az alkalmazásukkal kapcsolatos kedvező humán klinikai megfigyeléseket. Rámutat, hogy a hatályos kezelési irányelveket követő terápiás stratégia reményt kínál a diabetesszel társuló stroke-incidencia mérséklésére és a ma még a nem cukorbetegekénél kedvezőtlenebb kimenetel megváltoztatására. Orv Hetil. 2024; 165(13): 489–498.
The stroke is the second most common cause of death and the third most common cause of disability worldwide. All forms of diabetes are associated with increased cardiovascular risk, the risk being particularly high in type 2 diabetes. The risk of stroke is 1.5−2 times that of non-diabetics of the same age and increases proportionally with the time since the manifestation. Several groups of antidiabetics − especially thiazolidinediones, sodium-glucose cotransporter-2 inhibitors, and glucagon-like peptide-1 receptor agonists − have been proven to reduce circulatory risk. In particular, the possible cardio- and neuroprotective role of the latter group has recently come to the forefront of interest. This article reviews the characteristics of the occurrence of stroke accompanying diabetes, the pathogenetic background of the risk-reducing and potential stroke-preventing effect of glucagon-like peptide-1 receptor agonists as well as the favorable human clinical observations related to their use. It is pointed out that a therapeutic strategy following current treatment guidelines offers hope for reducing the incidence of stroke associated with diabetes and for changing the outcome, which at present is even worse than that of non-diabetic patients. Orv Hetil. 2024; 165(13): 489–498.
GBD 2019 Stroke Collaborators: Global, regional, and national burden of stroke and its risk factors, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet Neurol. 2021; 20: 795–820.
Feigin VJ, Brainin M, Norrving B, et al. World Stroke Organization (WSO) global stroke fact sheet 2022. Int J Stroke 2022; 17: 18–29. Erratum: Int J Stroke 2022; 17: 478.
Szőcs I, Bereczki D, Belicza É. Results of stroke care in Hungary in the frame of international comparison. [A stroke-ellátás hazai eredményei a nemzetközi adatok tükrében.] Orv Hetil. 2016; 157: 1635–1641. [Hungarian]
Hungarian Central Statistics Office. Deaths by most common causes of death and gender. [Központi Statisztikai Hivatal. 22.1.1.10. Halálozások a leggyakoribb halálokok és nem szerint.] Available from: https://www.ksh.hu/stadat_files/nep/hu/nep0010.html [accessed: 8 Feb, 2024]. [Hungarian]
Chang SN, Chen JJ, Huang PS, et al. Sodium-glucose cotransporter-2 inhibitor prevents stroke in patients with diabetes and atrial fibrillation. J Am Heart Assoc. 2023; 12: e027764.
Tsai WH, Chuang SM, Liu SCh, et al. Effects of SGLT-2 inhibitors on stroke and its subtypes in patients with type 2 diabetes: a systematic review and meta-analysis. Sci Rep. 2021; 11: 15364.
Tsai PC, Chuang WJ, Ko AM, et al. Neutral effects of SGLT-2 inhibitors in acute coronary syndromes, peripheral arterial occlusive disease, or ischemic stroke: a meta-analysis of randomized trials. Cardiovasc Diabetol. 2023; 22: 57.
Goldenberg RM, Cheng AY, Fitzpatrick T, et al. Benefits of GLP-1 (glucagon-like peptide-1) receptor agonists for stroke reduction in type 2 diabetes: a call to action for neurologists. Stroke 2022; 53: 1813–1822.
Chen R, Ovbiagele B, Feng W. Diabetes and stroke: epidemiology, pathophysiology, pharmaceuticals and outcomes. Am J Med Sci. 2016; 351: 380–386.
Mosenzon O, Cheng AY, Rabinstein AA, et al. Diabetes and stroke: what are the connections? J Stroke 2023; 25: 26–38.
Zhu J, Jiang Y. Editorial: The role of diabetes in the pathophysiology and prognosis of ischemic stroke. Front Endocrinol. 2023; 14: 1207537.
Janghorbani M, Hu FB, Willett WC, et al. Prospective study of type 1 and type 2 diabetes and risk of stroke subtypes. The Nurses’ Health Study. Diabetes Care 2007; 30: 1730–1735.
Soedamah-Muthu SS, Fuller JH, Mulnier HE, et al. High risk of cardiovascular disease in patients with type 1 diabetes in the U.K.: a cohort study using the general practice research database. Diabetes Care 2006, 29: 798– 804.
Zhiang L, Li X, Wolfe CD, et al. Diabetes as an independent risk factor for stroke recurrence in ischemic stroke patients: an updated meta-analysis. Neuroepidemiology 2021; 55: 427–435.
Winkler G. Real and misinterpretation of insulin resistance in the clinical practice. [Az inzulinrezisztencia valós és téves értelmezése a klinikai gyakorlatban.] Orv Hetil. 2020; 161: 1088–1093. [Hungarian]
Voeks JH, McClure LA, Go RC, et al. Regional differences in diabetes as a possible contributor to the geographic disparity in stroke mortality. The REasons for Geographic And Racial Differences in Stroke Study. Stroke 2008; 39: 1675–1680.
Liao CC, Shih CC, Yeh CC, et al. Impact of diabetes on stroke risk and outcomes. Two nationwide retrospective cohort studies. Medicine 2015; 94: e2282.
Mulvihill EE. Regulation of intestinal lipid and lipoprotein metabolism by the proglucagon-derived peptides, glucagon like peptide-1 and glucagon like peptide 2. Curr Opin Lipidol. 2018; 29: 95–103.
Kim YK, Song J. Potential of glucagon-like peptide 1 as a regulator of impaired cholesterol metabolism in brain. Adv Nutr. 2020; 11: 1686–1695.
Vergès B, Aboyans V, Angoulvant D, et al. Protection against stroke with glucagon-like peptide-1 receptor agonists: a comprehensive review of potential mechanisms. Cardiovasc Diabetol. 2022; 21: 242.
Li Y, Gong M. Analysis of the neuroprotective effect of GLP‐1 receptor agonist peptide on cerebral ischemia‐reperfusion injury by quantitative proteomics mass spectrometry. Brain Behav. 2021; 11: e02190.
Khat DZ, Husain M. Molecular mechanisms underlying the cardiovascular benefits of SGLT2i and GLP-1RA. Curr Diab Rep. 2018; 18: 45.
Ryder RE, DeFronzo RA. Diabetes medications with cardiovascular protection after HARMONY outcomes and DECLARE-TIMI 58: could metformin, pioglitazone, SGLT2 inhibitors and long-acting GLP-1 receptor agonists complement each other to save lives by different mechanisms? Br J Diabetes 2019; 19: 1–5.
Puglisi S, Rossini A, Poli R, et al. Effects of SGLT2 inhibitors and GLP-1 receptor agonists on renin-angiotensin-aldosterone system. Front Endocrinol. 2021, 12: 738848.
Winkler G. Complementary and additive effects – pathobiochemical background of the cardiorenal benefits of GLP-1 receptor agonists and SGLT-2 inhibitors. [Komplementer és additív hatások – a GLP-1 receptoragonisták és az SGLT-2 gátlók kardiorenális előnyeinek patobiokémiai háttere.] Diabetol Hung. 2021; 29: 279–287. [Hungarian]
Wu S, Lu W, Chen Z, et al. Association of glucagon-like peptide-1 recepor agonists with cardiac arrhythmias in patients with type 2 diabetes and obesity: a systematic review and meta-analysis of randomized controlled trials. Diabetol Metab Syndr. 2022; 14: 195.
Ishibashi T, Morita S, Furuta H, et al. Renoprotective potential of concomittant medication with SGLT2 inhibitors and renin-angiotensin system inhibitors in diabetic nephropathy without albuminuria: a retrospective cohort study. Sci Rep. 2023; 13: 16373.
Sharma A, Verma S. Mechanisms by which glucagon-like-peptide-1 receptor agonists and sodium-glucose cotransporter-2 inhibitors reduce cardiovascular risk in adults with type 2 diabetes mellitus. Can J Diabetes 2020; 44: 93–102.
Dutzmann J, Bode LM, Kalies K, et al. Empagliflozin prevents neointima formation by impairing smooth muscle cell proliferation and accelerating endothelial regeneration. Front Cardiovasc Med. 2022; 9: 956041.
Shi W, Zhang W, Zhang D, et al. Comparison of the effect of glucose-lowering agents on the risk of atrial fibrillation: a network meta-analysis. Heart Rhythm. 2021; 18: 1090–1096.
Bohne LJ, Jensen HJ, Dorey T, et al. Glucagon-like peptide-1 protects against atrial fibrillation and atrial remodeling in type 2 diabetic mice. JACC Basic Transl Sci. 2023; 8: 922–936.
Rolek B, Haber M, Gajewska M, et al. SGLT2 inhibitors vs. GLP-1 agonists to treat the heart, the kidneys and the brain. J Cardiovasc Dev Dis. 2023; 10: 322.
Winkler G. GLP1 receptor agonists in the therapy of type 2 diabetes. [GLP1-receptor-agonisták a 2-es típusú diabetes vércukorcsökkentő kezelésében.] Orv Hetil. 2022; 163: 1144–1151. [Hungarian]
Pfeffer MA, Claggett B, Diaz R, et al. Lixisenatide in patients with type 2 diabetes and aute coronary syndrome. N Engl J Med. 2015; 373: 2247–2257.
Holman RR, Bethel MA, Mentz RJ, et al. Effects of once-weekly exenatide on cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2017; 377: 1228–1239.
Husain M, Birkenfeld AL, Donsmark M, et al. Oral semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med. 2019; 381: 841–851.
Gerstein HC, Sattar N, Rosenstock J, et al. Cardiovascular and renal outcomes with efpeglenatide in type 2 diabetes. N Engl J Med. 2021; 385: 896–907.
Gerstein HC, Colhoun HM, Dagenais GR, et al. Dulaglutide and cardiovascular outcomes in type 2 diabetes (REWIND): a double-blind, randomised placebo-controlled trial. Lancet 2019; 394: 121–130.
Green JB, Hernandez AF, D’Agostino RB, et al. Harmony outcomes: a randomized, double-blind, placebo-controlled trial of the effect of albiglutide on major cardiovascular events in patients with type 2 diabetes mellitus – rationale, design, and baseline characteristics. Am Heart J. 2018, 203: 30–38.
Marso SP, Bain SC, Consoli A, et al. Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med. 2016; 375: 1834–1844.
Marso SP, Daniels GH, Brown-Frandsen K, et al. Liraglutide and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2016; 375: 311–322.
Gerstein HC, Hart R, Colhoun HM, et al. The effect of dulaglutide on stroke: an exploratory analysis of the REWIND trial. Lancet Diabetes Endocrinol. 2020; 8: 106–114.
Goldenberg RM, Cheng AY, Fitzpatrick T, et al. Benefits of GLP-1 (glucagon-like peptide 1) receptor agonists for stroke reduction in type 2 diabetes: a call to action for neurologists. Stroke 2022; 53: 1813–1822.
Husain M, Bain SC, Jeppesen OK, et al. Semaglutide (SUSTAIN and PIONEER) reduces cardiovascular events in type 2 diabetes across varying cardiovascular risk. Diabetes Obes Metab. 2020; 22: 442–451.
Wei J, Yang B, Wang R, et al. Risk of stroke and retinopathy during GLP-1 receptor agonist cardiovascular outcome trials: an eight RCTs meta-analysis. Front Endocrinol (Lausanne) 2022; 13: 1007980.
Banerjee M, Pal R, Mukhopadhyay S, et al. GLP-1 receptor agonists and risk of adverse cerebrovascular outcomes in type 2 diabetes: a systematic review and meta-analysis of randomized controlled trials. J Clin Endocrinol Metab. 2023; 108: 1806–1812.
Bellastella G, Maiorino MI, Longo M, et al. Glucagon-like peptide-1 receptor agonists and prevention of stroke. Systematic review of cardiovascular outcome trials with meta-analysis. Stroke 2020, 51: 666–669.
Wang JY, Wang QW, Yang XY, et al. GLP-1 receptor agonists for the treatment of obesity: role as a promising approach. Front Endocrinol. 2023; 14: 1085799.
Davies MJ, Aroda VR, Collins BS, et al. Management of hyperglycemia in type 2 diabetes, 2022. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care 2022, 45: 2753–2786.
Bedros JR, Jermendy Gy, Gaál Zs, et al. On the diagnosis, antidiabetic therapy and care of adult patients with diabetes mellitus. [Jermendy Gy. (ed.) A Belügyminisztérium egészségügyi szakmai irányelve a diabetes mellitus kórismézéséről, a cukorbetegek antihyperglykaemiás kezeléséről és gondozásáról felnőttkorban. (Klinikai egészségügyi szakmai irányelv, 002243.)] Diabetol Hung. 2023; 31(5): 331–444. [Hungarian]
American Diabetes Association, Professional Practice Committee. 9. Pharmacologic approaches to glycemic treatment: standards of medical care in diabetes – 2022. Diabetes Care 2022; 45(Suppl 1): S125–S143.
Visseren FL, Mach F, Smulders YM, et al. 2021 ESC guidelines on cardiovascular disease prevention in clinical practice. Eur Heart J. 2021; 42: 3227–3337.
Giugliano D, Longo M, Signoriello S, et al. The effekt of DPP-4 inhibitors, GLP-1 receptor agonists and SGLT-2 inhibitors on cardiorenal outcomes: a network meta-analysis of 23 CVOTs. Cardiovasc Diabetol. 2022; 21: 42.
Kleindorfer DO, Towfighi A, Chaturvedi S, et al. 2021 guideline for the prevention of stroke in patients with stroke and transient ischemic attack: a guideline from the American Heart Association/American Stroke Association. Stroke 2021, 52: e364–e467. Erratum: Stroke 2021; 52: e483–e484.
Pokoly B, Somogyi A. Rediscovery of pioglitazone. [A pioglitazon újrafelfedezése.] Orv Hetil. 2023; 164: 1012–1019. [Hungarian]