Az elhízás, a 2-es típusú diabetes, a cardiovascularis kórképek és a rosszindulatú daganatok napjaink legjelentősebb népbetegségei, melyek a mortalitási statisztikákat is vezetik. A hasonló epidemiológiai viselkedés hátterében metabolikus és molekuláris genetikai összefüggések igazolhatók. Az utóbbiak a közös sejtfelszíni receptorok, az intracelluláris szignálutak és a gének szintjén egyaránt felismerhetők. 2006-ra a teljes emberi génállományt sikerült feltérképezni. Ezt követően terjedtek el a genomszintű asszociációs vizsgálatok, amelyek áttörést hoztak számos, a mendeli szabályokat nem követő, poligénes öröklődést mutató kórkép genetikai hátterének megértésében. Segítségükkel olyan génvariánsok és lókuszok beazonosítása vált lehetővé, amelyek egyidejűleg többféle betegség kockázatával is összefüggést mutatnak. A poligénes elhízás és a 2-es típusú diabetes hátterében újabb gének százait fedezték fel, melyek egy részének szerepe a rákképződésben is felmerült. A legismertebb FTO és TCF7L2 gének komplex jelentősége az elsők között vetődött fel. Polimorfizmusaik az obesitas és a diabetes klinikai manifesztációját egyaránt befolyásolhatják. Az FTO az előbbi, a TCF7L2 az utóbbi kórkép kialakulásában játszhat közvetlen szerepet, ugyanakkor mindkét gén közvetett hatással lehet a másik betegség fenotípusára. Irodalmi adatok alapján az FTO enzimfehérje a génexpresszió poszttranszkripciós szabályozásával és az mTOR modulálása révén részt vehet az onkogenezisben, illetve a TCF7L2 géntermék egy olyan transzkripciós faktor, amely biológiai útvonalakat befolyásolva segítheti elő rosszindulatú tumorok képződését. Mindebből megállapítható, hogy az FTO és TCF7L2 gének vizsgálata mindhárom népbetegség, vagyis az elhízás, a 2-es típusú diabetes és a malignus daganatok diagnosztikájában, terápiájában és prognosztikájában is jelentőséggel bírhat. Végezetül kijelenthető, hogy a génasszociációs vizsgálatokkal felfedezett újabb génpolimorfizmusok és kapcsolataik részletes elemzése az onkodiabetológiai betegellátásban részt vevő szakorvosok és az érintett betegek jövőbeli közös érdeke. Orv Hetil. 2024; 165(13): 499–509.
Obesity, type 2 diabetes, cardiovascular diseases and malignancies are nowadays the most significant demographic disorders that dominate the statistics of mortality. There is evidence suggesting metabolic and molecular genetic correlations behind their similar epidemiological behaviour. The latter can be recognised on the level of shared cell surface receptors, intracellular signalling pathways and genes. By 2006, the entire human genome has been successfully mapped. This was followed by a growing number of genome-wide association studies, which have brought breakthroughs in the understanding of genetic background of a variety of diseases characterized by polygenic inheritance that do not follow the Mendelian constraints. They have made it possible to pinpoint specific gene variants and loci that are simultaneously linked to the risk of multiple diseases. Hundreds of novel genes underlying polygenic obesity and type 2 diabetes have been uncovered, some of which are thought to have a role in cancer. The complex significance of the best understood FTO and TCF7L2 genes was one of the first to be considered. Their polymorphisms affect the clinical manifestations of both obesity and diabetes. FTO may have a direct impact on the etiology of the former disorder and TCF7L2 on the latter, while both genes may have an indirect effect on the other disease’s phenotype. According to literature data, the FTO enzyme protein may be implicated in oncogenesis through post-transcriptional regulation of gene expression and through modulation of mTOR, and that the TCF7L2 gene product is known to be a transcription factor that may promote malignant tumour development by manipulating biological pathways. It can therefore be reasonably inferred that the investigation of the FTO and TCF7L2 genes may be of importance for diagnosis, management and prognostication of all three epidemics, namely, obesity, type 2 diabetes and malignant neoplasms. Conclusively it can be argued that a thorough assessment of the newer gene polymorphisms and their relations, revealed by gene association studies, is of shared future interest for the medical professionals involved in oncodiabetologic patient care and for the affected individuals. Orv Hetil. 2024; 165(13): 499–509.
Fall T, Ingelsson E. Genom-wide association studies of obesity and metabolic syndrome. Mol Cell Endocrinol. 2014; 382: 740–757.
Basile KJ, Johnson ME, Xia Q, et al. Genetic susceptibility to type 2 diabetes and obesity: follow-up of findings from genome-wide association studies. Int J Endocrinol. 2014; 2014: 769671.
Claussnitzer M, Cho JH, Collins R, et al. A brief history of human disease genetics. Nature 2020; 577: 179–189.
Campbell Am LV. Genetics of obesity. Aust Fam Physician 2017; 46: 456–459.
Beulens JW, Pinho MG, Abreu TC, et al. Environmental risk factors of type 2 diabetes – an exposome approach. Diabetologia 2022; 65: 263–274.
Hinney A, Vogel CI, Hebebrand J. From monogenic to polygenic obesity: recent advances. Eur Child Adolesc Psychiatry 2010; 19: 297–310.
Pearson ER. Type 2 diabetes: a multifaceted disease. Diabetologia 2019; 62: 1107–1112.
Meigs JB. Prediction of type 2 diabetes: the dawn of polygenetic testing for complex disease. Diabetologia 2009; 52: 568–570.
McCarthy MI, Hattersley AT. Learning from molecular genetics: novel insights arising from the definition of genes for monogenic and type 2 diabetes. Diabetes 2008; 57: 2889–2898.
Wagner R, Tabák ÁG, Fehlert E, et al. Excessive fuel availability amplifies the FTO-mediated obesity risk: results from the TUEF and Whitehall II studies. Sci Rep. 2017; 7: 15486.
Singh RK, Kumar P, Mahalingam K. Molecular genetics of human obesity: a comprehensive review. C R Biol. 2017; 340: 87–108.
Frayling TM, Timpson NJ, Weedon MN, et al. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science 2007; 316: 889–894.
Kim YJ, Lee HS, Kim YK, et al. Association of metabolites with obesity and type 2 diabetes based on FTO genotype. PLoS ONE 2016; 11: e0156612.
Bego T, Čaušević A, Dujić T, et al. Association of FTO gene variant (rs8050136) with type 2 diabetes and markers of obesity, glycaemic control and inflammation. J Med Biochem. 2019; 38: 153–163.
Loos RJ, Yeo GS. The bigger picture of FTO: the first GWAS-identified obesity gene. Nat Rev Endocrinol. 2014; 10: 51–61.
Claussnitzer M, Dankel SN, Kim KH, et al. FTO obesity variant circuitry and adipocyte browning in humans. N Engl J Med. 2015; 373: 895–907.
Li H, Kilpeläinen TO, Liu C, et al. Association of genetic variation in FTO with risk of obesity and type 2 diabetes with data from 96,551 East and South Asians. Diabetologia 2012; 55: 981–995.
Harbron J, van der Merwe L, Zaahl MG, et al. Fat mass and obesity-associated (FTO) gene polymorphisms are associated with physicial activity, food intake, eating behaviors, psychological health, and modeled change in body mass index in overweight/obese caucasian adults. Nutrients 2014; 6: 3130–3152.
Srivastava A, Mittal B, Prakash J, et al. Association of FTO and IRX3 genetic variants to obesity risk in north India. Ann Hum Biol. 2016; 43: 451–456.
Rosenquist JN, Lehrer SF, O’Malley AJ, et al. Cohort of birth modifies the association between FTO genotype and BMI. Proc Natl Acad Sci USA. 2015; 112: 354–359.
Andreasen CH, Stender-Petersen KL, Mogensen MS, et al. Low physical activity accentuates the effect of the FTO rs9939609 polymorphism on body fat accumulation. Diabetes 2008; 57: 95–101.
Sailer C, Schmid V, Fritsche L, et al. FTO genotype interacts with improvement in aerobic fitness on body weight loss during lifestyle intervention. Obes Facts 2016; 9: 174–181.
Kilpeläinen TO, Qi L, Brage S, et al. Physical activity attenuates the influence of FTO variants on obesity risk: a meta-analysis of 218,166 adults and 19,268 children. PLOS Med. 2011; 8: e1001116.
Qi Q, Downer MK, Kilpeläinen TO, et al. Dietary intake, FTO genetic variants, and adiposity: a combined analysis of over 16,000 children and adolescents. Diabetes 2015; 64: 2467–2476.
Haupt A, Thamer C, Staiger H, et al. Variation in the FTO gene influences food intake but not energy expenditure. Exp Clin Endocrinol Diabetes 2009; 117: 194–197.
Heni M, Kullmann S, Veit R, et al. Variation in the obesity risk gene FTO determines the postprandial cerebral processing of food stimuli in the prefrontal cortex. Mol Metab. 2014; 3: 109–113.
Tschritter O, Preissl H, Yokoyama Y, et al. Variation in the FTO gene locus is associated with cerebrocortical insulin resistance in humans. Diabetologia 2007; 50: 2602–2603. Erratum: Diabetologia 2008; 51: 1558.
Speakman JR, Rance KA, Johnstone AM. Polymorphisms of the FTO gene are associated with variation in energy intake, but not energy expenditure. Obesity (Silver Spring) 2008; 16: 1961–1965.
Shahid A, Rana S, Saeed S, et al. Common variant of FTO gene, rs9939609, and obesity in Pakistani females. Biomed Res Int. 2013; 2013: 324093.
Illangasekera YA, Kumarasiri RP, Fernando DJ, et al. Association of FTO and near MC4R variants with obesity measures in urban and rural dwelling Sri Lankans. Obes Res Clin Pract. 2016; 10(Suppl 1): S117–S124.
Martins MC, Trujillo J, Farias DR, et al. Association of the FTO (rs9939609) and MC4R (rs17782313) gene polymorphisms with maternal body weight during pregnancy. Nutrition 2016; 32: 1223–1230.
Cauchi S, Nead KT, Choquet H, et al. The genetic susceptibility to type 2 diabetes may be modulated by obesity status: implications for association studies. BMC Med Genet. 2008; 9: 45.
Lukács K, Pánczél P, Hosszúfalusi N. Genetics of type 1 diabetes: present and future. [Az 1-es típusú diabetes genetikája: jelen és jövő.] Orv Hetil. 2017; 158: 1731–1740. [Hungarian]
McCarthy MI. Genomics, type 2 diabetes, and obesity. N Engl J Med. 2010; 363: 2339–2350.
Gaal Z, Klupa T, Kantor I, et al. Sulfonylurea use during entire pregnancy in diabetes because of KCNJ11 mutation: a report of two cases. Diabetes Care 2012; 35: e40.
Phani NM, Vohra M, Rajesh S, et al. Implications of critical PPARγ2, ADIPOQ and FTO gene polymorphisms in type 2 diabetes and obesity-mediated susceptibility to type 2 diabetesin an Indian population. Mol Genet Genomics 2016; 291: 193–204.
Lan N, Lu Y, Zhang Y, et al. FTO – a common genetic basis for obesity and cancer. Front Genet. 2020; 11: 559138.
Zhang C, Bao W, Rong Y, et al. Genetic variants and the risk of gestational diabetes mellitus: a systematic review. Hum Reprod Update 2013; 19: 376–390.
McRae JF, Clayton S, Fitzgerald TW, et al. Deciphering developmental disorders study. Prevalence and architecture of the novo mutations in developmental disorders. Nature 2017; 542: 433–438.
Satterstrom FK, Kosmicki JA, Wang J, et al. Large-scale exome sequencing study implicates both developmental and functional changes in the neurobiology of autism. Cell 2020; 180: 568–584.e23.
Jin T, Liu L. The Wnt signaling pathway effector TCF7L2 and type 2 diabetes mellitus. Mol Endocrinol. 2008; 22: 2383–2392.
Bride L, Naslavsky M, Lopes Yamamoto G, et al. TCF7L2 rs7903146 polymorphism association with diabetes and obesity in an elderly cohort from Brazil. Peer J. 2021; 9: e11349.
Heni M, Ketterer C, Thamer C, et al. Glycemia determines the effect of type 2 diabetes risk genes on insulin secretion. Diabetes 2010; 59: 3247–3252.
Wagner R, Staiger H, Ullrich S, et al. Untangling the interplay of genetic and metabolic influences on beta-cell function: examples of potential therapeutic implications involving TCF7L2 and FFAR1. Mol Metab. 2014; 3: 261–267.
Li G, Chen Q, Wang L, et al. Association between FTO gene polymorphism and cancer risk: evidence from 16,277 cases and 31,153 controls. Tumour Biol. 2012; 33: 1237–1243.
Yang Y, Liu B, Xia W, et al. FTO genotype and type 2 diabetes mellitus: spatial analysis and meta-analysis of 62 case-control studies from different regions. Genes (Basel) 2017; 8: 70.
Azzam SK, Alsafar H, Sajini AA. FTO m6A demethylase in obesity and cancer: implications and underlying molecular mechanisms. Int J Mol Sci. 2022; 23: 3800.
Li Y, Su R, Deng X, et al. FTO in cancer: functions, molecular mechanisms, and therapeutic implications. Trends Cancer 2022; 8: 598–614.
Abdollahi S, Hasanpour Ardekanizadeh N, Poorhosseini SM, et al. Unraveling the complex interactions between the fat mass and obesity-associated (FTO) gene, lifestyle, and cancer. Adv Nutr. 2022; 13: 2406–2419.
Khudheyer Almyah M, Ayyob AN, Al-Badran RA, et al. Screening of exons 4-9 polymorphisms of FTO gene in endometrial and ovarian cancers. Arch Razi Inst. 2023; 78: 185–193.
Hernández-Caballero ME, Sierra-Ramírez JA. Single nucleotide polymorphisms of the FTO gene and cancer risk: an overview. Mol Biol Rep. 2015; 42: 699–704.
Huang X, Zhao J, Yang M, et al. Association between FTO gene polymorphism (rs9939609 T/A) and cancer risk: a meta-analysis. Eur J Cancer Care (Engl) 2017; 26: e12464.
Montazeri F, Hatami H, Fathi S, et al. FTO genotype was associated with breast cancer in HER2 negative patients. Clin Nutr ESPEN 2022; 49: 495–498.
Fathi S, Ahmadzadeh M, Vahdat M, et al. The effect of FTO rs9939609 polymorphism on the association between colorectal cancer and dietary fiber. Front Nutr. 2022; 9: 891819.
Gudmundsson J, Sulem P, Steinthorsdottir V, et al. Two variants on chromosome 17 confer prostate cancer risk, and the one in TCF2 protects against type 2 diabetes. Nat Genet. 2007; 39: 977–983.
Komiya Y, Habas R. Wnt signal transduction pathways. Organogenesis 2008; 4: 68–75.
Zhan T, Rindtorff N, Boutros M. Wnt signaling in cancer. Oncogene 2017; 36: 1461–1473.
Zimmerli D, Hausmann G, Cantú C, et al. Pharmacological interventions in the Wnt pathway: inhibition of Wnt secretion versus disrupting the protein-protein interfaces of nuclear factors. Br J Pharmacol. 2017; 174: 4600–4610.
Scott LJ, Mohlke KL, Bonnycastle LL, et al. A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science 2007; 316: 1341–1345.
Bánhegyi RJ, Gazdag A, Rácz B, et al. Oncodiabetology I. Metabolic and molecular relationships between cancer and diabetes. [Onkodiabetológia I. Metabolikus és molekuláris összefüggések a rosszindulatú daganatok és a cukorbetegség között.] Orv Hetil. 2022; 163: 1535–1543. [Hungarian]