Introduction: One of the major technological innovations of the last decade has been the proliferation of high-throughput molecular genetic testing methods, such as chromosomal microarray analysis (CMA) and whole-exome sequencing (WES) in prenatal diagnostics. Objective: Over the past 5 years, our working group has performed more than 252 prenatal examinations, indicated by ultrasound abnormalities of varying severity. Depending on the results of classical cytogenetic studies, we performed high-resolution CMA and WES analyses, with the aim to map the proportion of excess genetic information in the Hungarian population, as described in the literature. Method: CMA studies were performed using the “GeneChip System 3000 Instrument” platform with SNP-based comparative hybridization. We also performed next-generation sequencing of the whole human exome using IonTorrent and Illumina platforms. Results: A total of 252 fetal CMA examinations were performed and 42% showed some loss or gain, of which 22% showed pathogenic abnormalities. We performed WES in 42 CMA-negative cases, of which 9 (21.4%) were identified as pathogenic abnormalities supporting the inheritance process, with presumed association with fetal phenotype, based on the ClinVar database or ACMG classification. Discussion: Given the indirect nature of fetal phenotype assessment, prenatal CMA and WES analysis should be limited primarily to genes and chromosomal regions associated with ultrasound-identifiable symptoms. Parental examination is of paramount importance in both CMA and WES analyses, especially in cases where the resulting disorder cannot be clearly associated with ultrasound abnormalities. Conclusion: It is important to define the parameters by which copy number variations are detected in fetal samples. Recommendations for reporting variants confirmed by WES testing should also be given (taking international recommendations into account). These will provide more useful information for prenatal clinical genetic counselling. Orv Hetil. 2024; 165(14): 523–530.
Bevezetés: Az elmúlt évtized egyik jelentős technológiai újdonsága az ún. ’high-throughput’ molekuláris genetikai vizsgálati módszerek – mint a kromoszomális microarray-analízis (chromosomal microarray analysis, CMA) és a teljesexom-szekvenálás (whole-exome sequencing, WES) – elterjedése a praenatalis diagnosztikában. Célkitűzés: Az elmúlt 5 évben munkacsoportunk több mint 252 praenatalis vizsgálatot végzett hazai laboratóriumi háttérrel, amelyek indikációját különböző súlyosságú strukturális magzati ultrahangeltérések képezték. A klasszikus citogenetikai vizsgálatok eredményétől függően végeztük el a nagy felbontású CMA- és WES-analíziseket a praenatalis diagnosztika érdekében. Módszer: A CMA-vizsgálatokat a „GeneChip System 3000 Instrument” platformmal végeztük az SNP-alapú komparatív hibridizálás módszerével. Az általunk elvégzett újgenerációs szekvenálás során a teljes humán exom szekvenciájának meghatározása IonTorrent és Illumina platformokkal történt. Eredmények: Összesen 252 magzati CMA-vizsgálatot végeztünk, és 42%-ban mutattunk ki valamilyen hiányt vagy többletet, ebből 22%-ban igazoltunk kóros eltérést. 42 esetben végeztünk WES-t, amelyből 9 esetben (21,4%) azonosítottunk kóros eltérést az öröklésmenetet támogató, a magzati fenotípussal feltételezhetően összefüggésben lévő, a ClinVar adatbázis vagy az ACMG-klasszifikáció alapján. Megbeszélés: Tekintettel arra, hogy a magzati fenotípus értékelése közvetett, a praenatalis CMA- és WES-elemzésnek elsősorban a magzati ultrahangvizsgálat során azonosítható strukturális anomáliákkal összefüggő génekre, kromoszomális régiókra kell korlátozódnia. A szülők vizsgálata mind a CMA-, mind a WES-analízisek során kiemelt jelentőséggel bír, főleg azokban az esetekben, amelyeknél a kapott eltérés nem hozható egyértelmű összefüggésbe az ultrahangeltérésekkel. Következtetés: Fontos meghatározni azokat a paramétereket, amelyek alapján a magzati mintában talált kópiaszám-eltéréseket és WES-vizsgálattal igazolt variánsokat a leletben közöljük (figyelembe véve a nemzetközi ajánlásokat). Ezek alapján a praenatalis klinikai genetikai tanácsadáskor sokkal használhatóbb információk adhatók. Orv Hetil. 2024; 165(14): 523–530.
Beke A, Papp C, Tóth-Pál E, et al. Cytogenetic exploration of fetal ultrasound anomalies. [Ultrahangvizsgálattal észlelt magzati anomáliák citogenetikai feltárása.] Orv Hetil. 2004; 145: 2123–2133. [Hungarian]
Miller DT, Adam MP, Aradhya S, et al. Consensus statement: chromosomal microarray is a first-tier clinical diagnostic test for individuals with developmental disabilities or congenital anomalies. Am J Hum Genet. 2010; 86: 749–764.
Langlois S, Duncan A. Use of a DNA method, QF-PCR, in the prenatal diagnosis of fetal aneuploidies. J Obstet Gynaecol Can. 2011; 33: 955–960.
Pratt M, Garritty C, Thuku M, et al. Application of exome sequencing for prenatal diagnosis: a rapid scoping review. Genet Med. 2020; 22: 1925–1934.
Chandler NJ, Scotchman E, Mellis R, et al. Lessons learnt from prenatal exome sequencing. Prenat Diagn. 2022; 42: 831–844.
Fu F, Li R, Yu Q, et al. Application of exome sequencing for prenatal diagnosis of fetal structural anomalies: clinical experience and lessons learned from a cohort of 1618 fetuses. Genome Med. 2022; 14: 123.
Drury S, Williams H, Trump N, et al. Exome sequencing for prenatal diagnosis of fetuses with sonographic abnormalities Prenat Diagn. 2015; 35: 1010–1017.
Yadava SM, Ashkinadze E. Whole exome sequencing for prenatal diagnosis in cases with fetal anomalies: criteria to improve diagnostic yield. J Genet Couns. 2019; 28: 251–255.
Fiorentino F. Referee commentary Re: Hillman SC, McMullan DJ, Hall G, et al. Use of prenatal chromosomal microarray: prospective cohort study and systematic review and meta-analysis. Ultrasound Obstet Gynecol. 2013; 41: 610–620. Ultrasound Obstet Gynecol. 2013; 41(6): 608.
Novelli A, Grati FR, Ballarati L, et al. Microarray application in prenatal diagnosis: a position statement from the cytogenetics working group of the Italian Society of Human Genetics (SIGU). Ultrasound Obstet Gynecol. 2012; 39: 384–388.
Gardiner C, Wellesley D, Kilby MD, et al. Recommendations for the use of chromosome microarray in pregnancy. The Royal College of Pathologists, 2015. 1–17. Available from: https://www.rcpath.org/resourceLibrary/recommendations-for-the-use-of-chromosome-microarray-in-pregnancy.html [accessed: 5 February, 2024].
Falb RJ, Müller AJ, Klein W, et al. Bi-allelic loss-of-function variants in KIF21A cause severe fetal akinesia with arthrogryposis multiplex. J Med Genet. 2023; 60: 48–56.
Molina O, Blanco J, Anton E, et al. High-resolution fish on DNA fibers for low-copy repeats genome architecture studies. Genomics 2012; 100: 380–386.
WU X, Xu L, Li Y, et al. Submikroscopic aberrations of chromosome 16 in prenatal diagnosis. Mol Cytogenet. 2019; 12: 36.
Schimmel J, van Wezel MD, van Schendel R, et al. Chromosomal breaks at the origin of small tandem DNA duplications. Bioessays 2023; 45: e2200168.
Burnside RD. 22q11.21 Deletion syndromes: a review of proximal, central, and distal deletions and their associated features. Cytogenet Genome Res. 2015; 146: 89–99.
Tidrenczel Zs, P. Tardy E, Ladányi A, et al. Prenatally detected aortic arch anomalies and their consequences after birth. [Praenatalisan felismert magzati aortaív-rendellenességek és megszületés utáni következményeik.] Orv Hetil. 2023; 164: 1111–1120. [Hungarian]
Kalsner L, Chamberlain SJ. Prader-Willi, Angelman, and 15q11-q13 duplication syndromes. Pediatr Clin North Am. 2015; 62: 587–606.
Bokor BA, Török D, Horváth E, et al. Diagnosis of MECP2 duplication in a child and prenatally. [MECP2-gén-duplikáció gyermekkori és praenatalis diagnózisa.] Orv Hetil. 2024; 165: 30–34. [Hungarian]
Chandler, NJ, Scotchman, E, Mellis, R, et al. Lessons learnt from prenatal exome sequencing. Prenat Diagn. 2022; 42: 831–844.
Pratt M, Garritty C, Thuku M, et al. Application of exome sequencing for prenatal diagnosis: a rapid scoping review. Genet Med. 2022; 22: 1925–1934.
Richards, S, Aziz, N, Bale, S, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015; 17: 405–424.
Mellis R, Oprych K, Scotchman E, et al. Diagnostic yield of exome sequencing for prenatal diagnosis of fetal structural anomalies: a systematic review and meta-analysis. Prenat Diagn. 2022; 42: 662–685.
Richards S, Aziz N, Bale S, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015; 17: 405–424.
Guadagnolo D, Mastromoro G, Di Palma F, et al. Prenatal exome sequencing: background, current practice and future perspectives – a systematic review. Diagnostics 2021; 11: 224.
Tran Mau-Them F, Delanne J, Denommé-Pichon AS, et al. Prenatal diagnosis by trio exome sequencing in fetuses with ultrasound anomalies: a powerful diagnostic tool. Front Genet. 2023; 14: 1099995.
Filges I, Miny P, Holzgreve W, et al. How genomics is changing the practice of prenatal testing. J Perinat Med. 2022; 49: 1003–1010.
Alyousfi D, Baralle D, Collins A. Gene-specific metrics to facilitate identification of disease genes for molecular diagnosis in patient genomes: a systematic review. Brief Funct Genomics 2019; 18: 23–29.
Monaghan KG, Leach NT, Pekarek D, et al. The use of fetal exome sequencing in prenatal diagnosis: a points to consider document of the American College of Medical Genetics and Genomics (ACMG). Genet Med. 2020; 22: 675–680.
Vears D, Amor DJ. A framework for reporting secondary and incidental findings in prenatal sequencing: when and for whom? Prenat Diagn. 2022; 42: 697–704.
Jelin AC, Vora N. Whole exome sequencing: applications in prenatal genetics. Obstet Gynecol Clin North Am. 2018; 45: 69–81.
Mitrakos A, Kosma K, Makrythanasis P, et al. Prenatal chromosomal microarray analysis: does increased resolution equal increased yield? Genes (Basel) 2023; 14: 1519.
Drury S, Williams H, Trump N, et al. Exome sequencing for prenatal diagnosis of fetuses with sonographic abnormalities. Prenat Diagn. 2015; 35: 1010–1017.