Ahsan SA, Lackovic M, Katner A, et al. Metal fume fever: a review of the literature and cases reported to the Louisiana Poison Control Center. J La State Med Soc. 2009; 161: 348–351.
Greenberg MI,Vearrier D. Metal fume fever and polymer fume fever. Clin Toxicol (Phila). 2015; 53: 195–203.
Farrell FJ. Angioedema and urticaria as acute and late phase reactions to zinc fume exposure, with associated metal fume fever-like symptoms. Am J Ind Med. 1987; 12: 331–337.
Mueller EJ, Seger DL. Metal fume fever – a review. J Emerg Med. 1985; 2: 271–274.
El-Zein M, Infante-Rivard C, Malo JL, et al. Is metal fume fever a determinant of welding related respiratory symptoms and/or increased bronchial responsiveness? A longitudinal study. Occup Environ Med. 2005; 62: 688–694.
Ross DS. Welders’ metal fume fever. Occup Med. 1974; 24: 125–129.
Wardhana Datau EA. Metal fume fever among galvanized welders. Acta Med Indones. 2014; 46: 256–262.
Endre L. Occupational asthma in Hungary. [A foglalkozási asztma napjainkban Magyarországon.] Orv Hetil. 2015; 156: 769–778. [Hungarian]
National Institute for Occupational Safety and Health (NIOSH). Zinc oxide. Available from: https://www.cdc.gov/niosh/npg/npgd0675.html [accessed: 10. 02. 2024].
Vogel U, Cassee FR. Editorial: dose-dependent ZnO particle-induced acute phase response in humans warrants re-evaluation of occupational exposure limits for metal oxides. Part Fibre Toxicol. 2018; 15: 7.
European Chemicals Bureau. European Union Risk Assessment Report. ZnO, with addendum 2004. Available from: https://echa.europa.eu/documents/10162/cc20582a-d359-4722-8cb6-42f1736dc820 [accessed: 10. 02. 2024].
Brand P, Bauer M, Gube M, et al. Relationship between welding fume concentration and systemic inflammation after controlled exposure of human subjects with welding fumes from metal inert gas brazing of zinc-coated materials. J Occup Environ Med. 2014; 56: 1–5.
Monsé C, Raulf M, Jettkant B, et al. Health effects after inhalation of micro- and nano-sized zinc oxide particles in human volunteers. Arch Toxicol. 2021; 95: 53–65.
Al-Otaibi ST. Respiratory health of a population of welders. J Family Community Med. 2014; 21: 162–165.
Kővágó C, Szekeres B, Szűcs-Somlyó É, et al. Preliminary study to investigate the distribution and effects of certain metals after inhalation of welding fumes in mice. Environ Sci Pollut Res. 2022; 29: 49147–49160.
Mur JM, Pham QT, Teculescu D, et al. Arc welders respiratory health evolution over 5 years. Int Arch Occup Environ Health 1989; 61: 321–327.
Sferlazza SJ, Beckett WS. The respiratory health of welders. Am Rev Respir Dis. 1991; 143: 1134–1148.
Antonini JM, Lewis AB, Roberts JR, et al. Pulmonary effects of welding fumes: Review of worker and experimental animal studies. Am J Ind Med. 2003; 43: 350–360.
Berlinger B, Benker N, Weinbruch S, et al. Physicochemical characterisation of different welding aerosols. Anal Bioanal Chem. 2011; 399: 1773–1780.
Berlinger B, Ellingsen DG, Náray M, et al. A study of the bio-accessibility of welding fumes. J Environ Monit. 2008; 10: 1448–1453.
Schraufnagel DE. The health effects of ultrafine particles. Exp Mol Med. 2020; 52: 311–317.
Szűcs-Somlyó É, Lehel J, Májlinger K, et al. Immune response to zinc oxide inhalation in metal fume fever, and the possible role of IL-17f. Sci Rep. 2023; 13: 22239.
Blount BW. Two types of metal fume fever: mild vs. serious. Mil Med. 1990; 155: 372–377.
Cellini B. Memoirs of Benvenuto Cellini, a florentine artist. Bohn HG, London, 1850.
Turner JA, Thompson LR. Health hazards of brass foundries. I. Field investigations of the health hazards of the brass-foundry industry. II. Laboratory studies relating to the pathology of brass foundrymen’s ague. Pub Heal Bull. 1925. (Bull. No. 157.)
Lehmann KB. Studien über technisch und hygienisch wichtige Gase und Dampfe. XIV. Das Giess- oder Zinkfieber. Arch Hyg. 1910; 72: 358–381. [German]
Drinker KR, Thompson PK, Marsh MW. An investigation of the effect of long-continued ingestion of zinc, in the form of zinc oxide, by cats and dogs, together with observations upon the excretion and the storage of zinc. Am J Physiol. 1927; 80: 31–64.
Swiller AI, Swiller HE. Metal fume fever. Am J Med. 1957; 22: 173–174.
Pernis B, Vigliani EC, Cavagna G, et al. Endogenous pyrogen in the pathogenesis of zinc-fume fever. Med Lav. 1960; 51: 579–586.
McCord CP. Metal fume fever as an immunological disease. Ind Med Surg. 1960; 29: 101–107.
Kawane H, Soejima R, Umeki S, et al. Metal fume fever and asthma. Chest 1988; 93: 1116–1117.
Malo JL, Cartier A. Occupational asthma due to fumes of galvanized metal. Chest 1987; 92: 375–377.
Vogelmeier C, Konig G, Bencze K, et al. Pulmonary involvement in zinc fume fever. Chest 1987; 92: 946–948.
Martin CJ, Guidotti TL, Langãrd S. Respiratory hazards of welding. Clin Pulm Med. 1997; 4: 194–204.
Brand P, Lenz K, Reisgen U, et al. Number size distribution of fine and ultrafine fume particles from various welding processes. Ann Occup Hyg. 2013; 57: 305–313.
Sabella S, Carney RP, Brunetti V, et al. A general mechanism for intracellular toxicity of metal-containing nanoparticles. Nanoscale 2014; 6: 7052–7061.
Cho WS, Duffin R, Howie SE, et al. Progressive severe lung injury by zinc oxide nanoparticles; the role of Zn2+ dissolution inside lysosomes. Part Fibre Toxicol. 2011; 8: 27.
Gammoh NZ, Rink L. Zinc in infection and inflammation. Nutrients 2017; 9: 624.
Jomova K, Valko M. Advances in metal-induced oxidative stress and human disease. Toxicology 2011; 283: 65–87.
Liu T, Zhang LY, Joo D, et al. NF-kappa B signaling in inflammation. Signal Transduct Target Ther. 2017; 2: 17023.
Jacobsen NR, Stoeger T, van den Brule S, et al. Acute and subacute pulmonary toxicity and mortality in mice after intratracheal instillation of ZnO nanoparticles in three laboratories. Food Chem Toxicol. 2015; 85: 84–95.
Girardello F, Leite CC, Touguinha LB, et al. ZnO nanoparticles alter redox metabolism of Limnoperna fortunei. Environ Sci Pollut Res Int. 2021; 28: 69416–69425.
Chen JK, Ho CC, Chang H, et al. Particulate nature of inhaled zinc oxide nanoparticles determines systemic effects and mechanisms of pulmonary inflammation in mice. Nanotoxicology 2015; 9: 43–53.
Krabbe J, Beilmann V, Gerhards B, et al. The effects of repeated exposure to zinc- and copper-containing welding fumes on healthy volunteers. J Occup Environ Med. 2019; 61: 8–15.
Conti B, Tabarean I, Andrei C, et al. Cytokines and fever. Front Biosci. 2004; 9: 1433–1449.
Kelleher P, Pacheco K, Newman LS. Inorganic dust pneumonias: the metal-related parenchymal disorders. Environ Health Perspect. 2000; 108(Suppl 4): 685–696.
Burmester GR, Pezzutto A, Ulrichs T, et al. Color atlas of immunology. Thieme, Stuttgart, 2003.
Valkó A, Lőrincz M. Illustrated book of immunology. A/3 Nyomdaipari és Kiadói Szolgáltató Kft., Budapest, 2020.
Hadrup N, Rahmani F, Jacobsen NR, et al. Acute phase response and inflammation following pulmonary exposure to low doses of zinc oxide nanoparticles in mice. Nanotoxicology 2019; 13: 1275–1292.
Hartmann L, Bauer M, Bertram J, et al. Assessment of the biological effects of welding fumes emitted from metal inert gas welding processes of aluminium and zinc-plated materials in humans. Int J Hyg Environ Health 2014; 217: 160–168.
Monsé C, Hagemeyer O, Raulf M, et al. Concentration-dependent systemic response after inhalation of nano-sized zinc oxide particles in human volunteers. Part Fibre Toxicol. 2018; 15: 8.
Reisgen M, Thomas K, Beilmann V, et al. Increased neutrophil granulocyte and myeloperoxidase levels indicate acute inflammation due to the exposure of zinc- and copper-containing welding fumes. J Occup Environ Med. 2020; 62: 618–627.
Adamcakova-Dodd A, Stebounova LV, Kim JS, et al. Toxicity assessment of zinc oxide nanoparticles using sub-acute and sub-chronic murine inhalation models. Part Fibre Toxicol. 2014; 11: 15.
Bauer M, Fink B, Anderegg U, et al. IL17F expression as an early sign of oxidative stress-induced cytotoxicity/apoptosis. Genes 2022; 13: 1739.
Huang KL, Chang HL, Tsai FM, et al. The effect of the inhalation of and topical exposure to zinc oxide nanoparticles on airway inflammation in mice. Toxicol Appl Pharmacol. 2019; 384: 114787.
Kumar V, Abbas AK, Fausto N, et al. Robbins basic pathology. 8th ed. Saunders Elsevier, Philadelphia, PA, 2007.
Day MJ, Schultz RD. Veterinary immunology. Principles and practice. 2nd ed. CRC Press, London, 2014.
Papp JP. Metal fume fever. Postgrad Med. 1968; 43: 160–163.
Summer W, Haponik E. Inhalation of irritant gases. Clin Chest Med. 1981; 2: 273–287.
Krabbe J, Kraus T, Krabbe H, et al. Welding fume instillation in isolated perfused mouse lungs-effects of zinc- and copper-containing welding fumes. Int J Mol Sci. 2022; 23: 9052.
Habib N, Pasha MA, Tang DD. Current understanding of asthma pathogenesis and biomarkers. Cells 2022; 11: 2764.