Az ágyéki derékfájdalom világszerte a munkaképes korú populáció fogyatékosságának egyik fő oka, jelentős költségeket róva az egészségügyi rendszerekre. A fájdalom eredete a leggyakrabban az intervertebralis discus degenerációjára vezethető vissza. Ennek ellenére a fájdalom eredetének meghatározása az egyik legnagyobb kihívás a mindennapi orvosi gyakorlatban. Az intervertebralis porckorong morfológiája pontos jellemzésének képességével a mágnesesrezonancia-képalkotás (MRI) a leggyakrabban javallt és legfontosabb képalkotó diagnosztikai vizsgálat a derékfájásban szenvedő betegeknél. A derékfájás okának meghatározása azonban bonyolult. Számos különböző képi jellemző társulhat a derékfájáshoz, melyek gyakran derékfájás nélkül is jelen lehetnek. Az elmúlt években több MRI-szekvenciát fejlesztettek ki a deréktáji fájdalom eredetének diagnosztizálására. Közleményünkben áttekintjük a legújabb MRI-módszereket, amelyek képesek az intervertebralis discusok összetételében bekövetkező biokémiai változások jellemzésére. Ezek az eljárások segítséget jelenthetnek a discus degenerációjának és az ágyéki gerincfájdalom kapcsolatának pontos felderítésében. Orv Hetil. 2024; 165(32): 1227–1236.
Low back pain is a major cause of disability in the working-age population worldwide, imposing significant costs on healthcare systems. The origin of the pain can most often be traced back to the degeneration of the intervertebral disc. Nevertheless, determining the origin of pain is one of the biggest challenges in everyday medical practice. With its ability to accurately characterize the morphology of the intervertebral disc, magnetic resonance imaging (MRI) is the most frequently indicated and most important imaging diagnostic technic in patients with low back pain. However, determining the cause of low back pain is complicated. Many different imaging features can be associated with low back pain, often present without low back pain. In recent years, several MRI sequences have been developed to diagnose the origin of low back pain. In this article, we review the latest MRI methods, capable of characterizing biochemical changes in the composition of intervertebral discs. These procedures can help in the exact detection of the relationship between disc degeneration and low back pain. Orv Hetil. 2024; 165(32): 1227–1236.
Hartvigsen J, Hancock MJ, Kongsted A, et al. What low back pain is and why we need to pay attention. Lancet 2018; 391: 2356–2367.
GBD 2021 Low Back Pain Collaborators. Global, regional, and national burden of low back pain, 1990–2020, its attributable risk factors, and projections to 2050: a systematic analysis of the Global Burden of Disease Study 2021. Lancet Rheumatol. 2023; 5: e316–e329.
Deyo RA, Weinstein JN. Low back pain. N Engl J Med. 2001; 344: 363–370.
Balagué F, Mannion AF, Pellisé F, et al. Non-specific low back pain. Lancet 2012; 379: 482–491.
Urban JP, Roberts S. Degeneration of the intervertebral disc. Arthritis Res Ther. 2003; 5: 120–130.
Palmgren T, Grönblad M, Virri J, et al. An immunohistochemical study of nerve structures in the anulus fibrosus of human normal lumbar intervertebral discs. Spine 1999; 24: 2075–2079.
Cavanaugh JM, Ozaktay AC, Yamashita T, et al. Mechanisms of low back pain: a neurophysiologic and neuroanatomic study. Clin Orthop Relat Res. 1997; 335: 166–180.
Marchand F, Ahmed AM. Investigation of the laminate structure of lumbar disc anulus fibrosus. Spine 1990; 15: 402–410.
Roughley PJ. Biology of intervertebral disc aging and degeneration: involvement of the extracellular matrix. Spine 2004; 29: 2691–2699.
Urban JP, Smith S, Fairbank JC. Nutrition of the intervertebral disc. Spine 2004; 29: 2700–2709.
Fournier DE, Kiser PK, Shoemaker JK, et al. Vascularization of the human intervertebral disc: a scoping review. JOR Spine 2020; 3: e1123.
Iatridis JC, McLean JJ, Roughley PJ, et al. Effects of mechanical loading on intervertebral disc metabolism in vivo. J Bone Joint Surg Am. 2006; 88(Suppl 2): 41–46.
Antoniou J, Steffen T, Nelson F, et al. The human lumbar intervertebral disc: evidence for changes in the biosynthesis and denaturation of the extracellular matrix with growth, maturation, ageing, and degeneration. J Clin Investig. 1996; 98: 996–1003.
Oichi T, Taniguchi Y, Oshima Y, et al. Pathomechanism of intervertebral disc degeneration. JOR Spine 2020; 3: e1076.
Roberts S, Caterson B, Menage J, et al. Matrix metalloproteinases and aggrecanase: their role in disorders of the human intervertebral disc. Spine 2000; 25: 3005–3013.
Le Maitre CL, Freemont AJ, Hoyland JA. Accelerated cellular senescence in degenerate intervertebral discs: a possible role in the pathogenesis of intervertebral disc degeneration. Arthritis Res Ther. 2007; 9; R45.
Jensen MC, Brant-Zawadzki MN, Obuchowski N, et al. Magnetic resonance imaging of the lumbar spine in people without back pain. N Engl J Med. 1994; 331: 69–73.
Yoshida M, Nakamura T, Sei A, Kikuchi T, et al. Intervertebral disc cells produce tumor necrosis factor alpha, interleukin-1beta, and monocyte chemoattractant protein-1 immediately after herniation: an experimental study using a new hernia model. Spine 2005; 30: 55–61.
Burke JG, Watson RW, McCormack D, et al. Intervertebral discs which cause low back pain secrete high levels of proinflammatory mediators. J Bone Joint Surg Br. 2002; 84: 196–201.
Freemont AJ, Peacock TE, Goupille P, et al. Nerve ingrowth into diseased intervertebral disc in chronic back pain. Lancet 1997; 350: 178–181.
Boden SD, Davis DO, Dina TS, et al. Abnormal magnetic-resonance scans of the lumbar spine in asymptomatic subjects. A prospective investigation. J Bone Joint Surg Am. 1990; 72: 403–408.
Mok GS, Zhang D, Chen SZ, et al. Comparison of three approaches for defining nucleus pulposus and annulus fibrosus on sagittal magnetic resonance images of the lumbar spine. J Orthop Translat. 2016; 6: 34–41.
Sheehan NJ. Magnetic resonance imaging for low back pain: indications and limitations. Ann Rheum Dis. 2010; 69: 7–11.
Rao D, Scuderi G, Scuderi C, et al. The use of imaging in management of patients with low back pain. J Clin Imaging Sci. 2018; 8: 30.
Rautiainen J, Nissi MJ, Salo EN, et al. Multiparametric MRI assessment of human articular cartilage degeneration: correlation with quantitative histology and mechanical properties. Magn Reson Med. 2015; 74: 249–259.
Grover VP, Tognarelli JM, Crossey MM, et al. Magnetic resonance imaging: principles and techniques: lessons for clinicians. J Clin Exp Hepatol. 2015; 5: 246–255.
Haughton V. The “dehydrated” lumbar intervertebral disk on MR, its anatomy, biochemistry and biomechanics. Neuroradiology 2011; 53(Suppl 1): S191–S194.
Pfirrmann CW, Metzdorf A, Zanetti M, et al. Magnetic resonance classification of lumbar intervertebral disc degeneration. Spine 2001; 26: 1873–1878.
Wei X, Gengwu L, Chao C, et al. Correlations between the sagittal plane parameters of the spine and pelvis and lumbar disc degeneration. J Orthop Surg Res. 2018; 13: 137.
Griffith JF, Wang YX, Antonio GE, et al. Modified Pfirrmann grading system for lumbar intervertebral disc degeneration. Spine 2007; 32: E708–E712.
Modic MT, Steinberg PM, Ross JS, et al. Degenerative disk disease: assessment of changes in vertebral body marrow with MR imaging. Radiology 1988; 166: 193–199.
Lotz JC, Fields AJ, Liebenberg EC. The role of the vertebral end plate in low back pain. Global Spine J. 2013; 3: 153–164.
Ota Y, Connolly M, Srinivasan A, et al. Mechanisms and origins of spinal pain: from molecules to anatomy, with diagnostic clues and imaging findings. RadioGraphics 2020; 40: 1163–1181.
Rahme R, Moussa R. The Modic vertebral endplate and marrow changes: pathologic significance and relation to low back pain and segmental instability of the lumbar spine. Am J Nuroradiol. 2008; 29: 838–842.
Marshman LA, Trewhella M, Friesem T, et al. Reverse transformation of Modic type 2 changes to Modic type 1 changes during sustained chronic low-back pain severity. Report of two cases and review of the literature. J Neurosurg Spine 2007; 6: 152–155. Erratum: J Neurosurg Spine 2007; 6: 621.
Dudli S, Fields AJ, Samartzis D, et al. Pathobiology of Modic changes. Eur Spine J. 2016; 25: 3723–3734.
Albert HB, Manniche C, Sorensen JS, et al. Antibiotic treatment in patients with low-back pain associated with Modic changes type 1 (bone oedema): a pilot study. Br J Sports Med. 2008; 42: 969–973.
Splendiani A, Bruno F, Marsecano C, et al. Modic I changes size increase from supine to standing MRI correlates with increase in pain intensity in standing position: uncovering the “biomechanical stress” and “active discopathy” theories in low back pain. Eur Spine J. 2019; 28: 983–992.
Van der Graaf JW, Kroeze RJ, Buckens CF, et al. MRI image features with an evident relation to low back pain: a narrative review. Eur Spine J. 2023; 32: 1830–1841.
Aprill C, Bogduk N. High-intensity zone: a diagnostic sign of painful lumbar disc on magnetic resonance imaging. Br J Radiol. 1992; 65: 361–369.
Fang C, Zhang W, Chen L, et al. The correlation between the high-intensity zone on a T2-weighted MRI and positive outcomes of discography: a meta-analysis. J Orthop Surg Res. 2017; 12: 26.
Jha SC, Higashino K, Sakai T, et al. Clinical significance of high-intensity zone for discogenic low back pain: a review. J Med Invest. 2016; 63: 1–7.
Teraguchi M, Yim R, Cheung JP, et al. The association of high-intensity zones on MRI and low back pain: a systematic review. Scoliosis Spinal Disord. 2018; 13: 22.
Eck BL, Yang M, Elias JJ, et al. Quantitative MRI for evaluation of musculoskeletal disease: cartilage and muscle composition, joint inflammation, and biomechanics in osteoarthritis. Invest Radiol. 2023; 58: 60–75.
Welsch GH, Hennig FF, Krinner S, et al. T2 and T2* mapping. Curr Radiol Rep. 2014; 2: 60.
Zeldin L, Mosley GE, Laudier D, et al. Spatial mapping of collagen content and structure in human intervertebral disk degeneration. JOR Spine 2020; 3: e1129.
Mallio CA, Vadalà G, Russo F, et al. Novel magnetic resonance imaging tools for the diagnosis of degenerative disc disease: a narrative review. Diagnostics 2022; 12: 420.
Nagy S, Juhász I, Komáromy H, et al. A statistical model for intervertebral disc degeneration: determination of the optimal T2 cut-off values. Clin Neuroradiol. 2014; 24: 355–363.
Detiger SE, Holewijn RM, Hoogendoorn RJ, et al. MRI T2* mapping correlates with biochemistry and histology in intervertebral disc degeneration in a large animal model. Eur Spine J. 2015; 24: 1935–1943.
Peeters M, Detiger SE, Karfeld-Sulzer LS, et al. BMP-2 and BMP-2/7 heterodimers conjugated to a fibrin/hyaluronic acid hydrogel in a large animal model of mild intervertebral disc degeneration. BioRes Open Access 2015; 4: 398–406.
Johannessen W, Auerbach JD, Wheaton AJ, et al. Assessment of human disc degeneration and proteoglycan content using T1rho-weighted magnetic resonance imaging. Spine 2006; 31: 1253–1257.
Togao O, Hiwatashi A, Wada T, et al. A qualitative and quantitative correlation study of lumbar intervertebral disc degeneration using glycosaminoglycan chemical exchange saturation transfer, Pfirrmann grade, and T1-ρ. Am J Neuroradiol. 2018; 39: 1369–1375.
Takayama Y, Hatakenaka M, Tsushima H, et al. T1ρ is superior to T2 mapping for the evaluation of articular cartilage denaturalization with osteoarthritis: radiological-pathological correlation after total knee arthroplasty. Eur J Radiol. 2013; 82: e192–e198.
Blumenkrantz G, Zuo J, Li X, et al. In vivo 3.0-Tesla magnetic resonance T1ρ and T2 relaxation mapping in subjects with intervertebral disc degeneration and clinical symptoms. Magn Reson Med. 2010; 63: 1193–1200.
Fenty M, Crescenzi R, Fry B, et al. Novel imaging of the intervertebral disk and pain. Global Spine J. 2013; 3: 127–132.
Burstein D, Velyvis J, Scott KT, et al. Protocol issues for delayed Gd(DTPA)2–-enhanced MRI: (dGEMRIC) for clinical evaluation of articular cartilage. Magn Reson Med. 2001; 45: 36–41.
Vaga S, Raimondi MT, Caiani EG, et al. Quantitative assessment of intervertebral disc glycosaminoglycan distribution by gadolinium-enhanced MRI in orthopedic patients. Magn Reson Med. 2008; 59: 85–95.
Silagi ES, Shapiro IM, Risbud MV. Glycosaminoglycan synthesis in the nucleus pulposus: dysregulation and the pathogenesis of disc degeneration. Matrix Biol. 2018; 71–72: 368–379.
Schiopu D, Devriendt A, Reynders P, et al. Is there a chance for regeneration of intervertebral discs? A preliminary study. [Van-e esély az intervertebralis discusok regenerációjára? Előzetes tanulmány.] Orv Hetil. 2022; 163: 789–796. [Hungarian]
Li X, Majumdar S. Quantitative MRI of articular cartilage and its clinical applications. J Magn Reson Imaging 2013; 38: 991–1008.
Ward KM, Aletras AH, Balaban RS. A new class of contrast agents for MRI based on proton chemical exchange dependent saturation transfer (CEST). J Magn Reson. 2000; 143: 79–87.
Van Zijl PC, Yadav NN. Chemical exchange saturation transfer (CEST): what is in a name and what isn’t? Magn Reson Med. 2011; 65: 927–948.
Schleich C, Müller-Lutz A, Eichner M, et al. Glycosaminoglycan chemical exchange saturation transfer of lumbar intervertebral discs in healthy volunteers. Spine 2016; 41: 146–152.
Pulickal T, Boos J, Konieczny M, et al. MRI identifies biochemical alterations of intervertebral discs in patients with low back pain and radiculopathy. Eur Radiol. 2019; 29: 6443–6446.
Pelled G, Salas MM, Han P, et al. Intradiscal quantitative chemical exchange saturation transfer MRI signal correlates with discogenic pain in human patients. Sci Rep. 2021; 11: 19195.
Proctor WG, Yu FC. The dependence of a nuclear magnetic resonance frequency upon chemical compound. Phys Rev. 1950; 77: 717.
Castillo M, Kwock L, Mukherji SK. Clinical applications of proton MR spectroscopy. Am J Neuroradiol. 1996; 17: 1–15.
Letertre MP, Giraudeau P, de Tullio P. Nuclear magnetic resonance spectroscopy in clinical metabolomics and personalized medicine: current challenges and perspectives. Front Mol Biosci. 2021; 8: 698337.
Wang C, McArdle E, Fenty M, et al. Validation of sodium magnetic resonance imaging of intervertebral disc. Spine 2010; 35: 505–510.
Carragee EJ, Tanner CM, Khurana S, et al. The rates of false-positive lumbar discography in select patients without low back symptoms. Spine 2000; 25: 1373–1380.
Carragee EJ, Don AS, Hurwitz EL, et al. Does discography cause accelerated progression of degeneration changes in the lumbar disc: a ten-year matched cohort study. Spine 2009; 34: 2338–2345. Erratum: Spine 2010; 35: 1414.